Session layerIn the seven-layer OSI model of computer networking, the session layer is layer 5. The session layer provides the mechanism for opening, closing and managing a session between end-user application processes, i.e., a semi-permanent dialogue. Communication sessions consist of requests and responses that occur between applications. Session-layer services are commonly used in application environments that make use of remote procedure calls (RPCs). An example of a session-layer protocol is the OSI protocol suite session-layer protocol, also known as X.
Accumulation pointIn mathematics, a limit point, accumulation point, or cluster point of a set in a topological space is a point that can be "approximated" by points of in the sense that every neighbourhood of with respect to the topology on also contains a point of other than itself. A limit point of a set does not itself have to be an element of There is also a closely related concept for sequences.
Overlay networkAn overlay network is a computer network that is layered on top of another network. Nodes in the overlay network can be thought of as being connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network. For example, distributed systems such as peer-to-peer networks and client–server applications are overlay networks because their nodes run on top of the Internet.
Presentation layerIn the seven-layer OSI model of computer networking, the presentation layer is layer 6 and serves as the data translator for the network. It is sometimes called the syntax layer. Within the service layering semantics of the OSI network architecture, the presentation layer responds to service requests from the application layer and issues service requests to the session layer through a unique presentation service access point (PSAP).
Maximum and minimumIn mathematical analysis, the maximum and minimum of a function are, respectively, the largest and smallest value taken by the function. Known generically as extremum, they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions.
ManifoldIn mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Critical point (mathematics)Critical point is a wide term used in many branches of mathematics. When dealing with functions of a real variable, a critical point is a point in the domain of the function where the function is either not differentiable or the derivative is equal to zero. When dealing with complex variables, a critical point is, similarly, a point in the function's domain where it is either not holomorphic or the derivative is equal to zero. Likewise, for a function of several real variables, a critical point is a value in its domain where the gradient is undefined or is equal to zero.
Adherent pointIn mathematics, an adherent point (also closure point or point of closure or contact point) of a subset of a topological space is a point in such that every neighbourhood of (or equivalently, every open neighborhood of ) contains at least one point of A point is an adherent point for if and only if is in the closure of thus if and only if for all open subsets if This definition differs from that of a limit point of a set, in that for a limit point it is required that every neighborhood of contains at least
Transport layerIn computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing. The details of implementation and semantics of the transport layer of the Internet protocol suite, which is the foundation of the Internet, and the OSI model of general networking are different.
Boundary (topology)In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set S include and . Some authors (for example Willard, in General Topology) use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds.