Publication

On the behavior of uniaxial static stress loaded micro-scale fused silica beams at room temperature

Abstract

The question of whether static stress in fused silica relaxes at room temperature is still under debate. Here, we report experimental data investigating the behavior of fused silica at room temperature when subjected to static tensile stress up to 2 GPa stress levels under different environmental conditions. Our measurements are performed using an innovative combination of methods; a femtosecond laser is used to accurately load a monolithic microscale test beam in a non-contact manner, fabricated using femtosecond laser processing and chemical etching, while the stress is continuously monitored using photoelasticity over an extended period spanning several months, in both dry and normal atmospheric conditions. The results are of practical importance, not only for photonics devices making use of stress-induced birefringence but also for flexures subjected to static loads.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Stress (mechanics)
In continuum mechanics, stress is a physical quantity that describes forces present during deformation. An object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has units of force per area, such as newtons per square meter (N/m2) or pascal (Pa).
Stress–strain analysis
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.
Ultimate tensile strength
Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials the ultimate tensile strength is close to the yield point, whereas in ductile materials the ultimate tensile strength can be higher. The ultimate tensile strength is usually found by performing a tensile test and recording the engineering stress versus strain.
Show more
Related publications (39)

Ultrahigh-quality-factor micro- and nanomechanical resonators using dissipation dilution

Tobias Kippenberg, Alberto Beccari, Nils Johan Engelsen

Mechanical resonators are widely used in sensors, transducers and optomechanical systems, where mechanical dissipation sets the ultimate limit to performance. Over the past 15 years, the quality factors in strained mechanical resonators have increased by f ...
Berlin2024

Three-dimensional stress state during dynamic shear rupture propagation along frictional interfaces in elastic plates

Jean-François Molinari, Roozbeh Rezakhani

The state of stress in plates, where one geometric dimensions is much smaller than the others, is often assumed to be of plane stress. This assumption is justified by the fact that the out-of-plane stress components are zero on the free-surfaces of a plate ...
ELSEVIER2022

Radius-dependent homogeneous strain in uncoalesced GaN nanowires

Pierre Michel Corfdir

We investigate the strain state of ensembles of thin and nearly coalescence-free self-assembled GaN nanowires prepared by plasma-assisted molecular beam epitaxy on Ti/Al2O3 (0001) substrates. The shifts of Bragg peaks in high-resolution X-ray diffraction p ...
PERGAMON-ELSEVIER SCIENCE LTD2020
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.