Publication

Classical soft graviton theorem rewritten

Biswajit Sahoo
2022
Journal paper
Abstract

Classical soft graviton theorem gives the gravitational wave-form at future null infinity at late retarded time u for a general classical scattering. The large u expansion has three known universal terms: the constant term, the term proportional to 1/u and the term proportional to ln u/u(2), whose coefficients are determined solely in terms of the momenta of incoming and the outgoing hard particles, including the momenta carried by outgoing gravitational and electromagnetic radiation produced during scattering. For the constant term, also known as the memory effect, the dependence on the momenta carried away by the final state radiation / massless particles is known as non-linear memory or null memory. It was shown earlier that for the coefficient of the 1/u term the dependence on the momenta of the final state massless particles / radiation cancels and the result can be written solely in terms of the momenta of the incoming particles / radiation and the final state massive particles. In this note we show that the same result holds for the coefficient of the ln u/u(2) term. Our result implies that for scattering of massless particles the coefficients of the 1/u and ln u/u(2) terms are determined solely by the incoming momenta, even if the particles coalesce to form a black hole and massless radiation. We use our result to compute the low frequency flux of gravitational radiation from the collision of massless particles at large impact parameter.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.