Discrete valuation ringIn abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain R which satisfies any one of the following equivalent conditions: R is a local principal ideal domain, and not a field. R is a valuation ring with a value group isomorphic to the integers under addition. R is a local Dedekind domain and not a field. R is a Noetherian local domain whose maximal ideal is principal, and not a field.
Ultrametric spaceIn mathematics, an ultrametric space is a metric space in which the triangle inequality is strengthened to . Sometimes the associated metric is also called a non-Archimedean metric or super-metric. An ultrametric on a set M is a real-valued function (where R denote the real numbers), such that for all x, y, z ∈ M: d(x, y) ≥ 0; d(x, y) = d(y, x) (symmetry); d(x, x) = 0; if d(x, y) = 0 then x = y; d(x, z) ≤ max {d(x, y), d(y, z) } (strong triangle inequality or ultrametric inequality).
Algebraic geometryAlgebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations.
Complete metric spaceIn mathematical analysis, a metric space M is called complete (or a Cauchy space) if every Cauchy sequence of points in M has a limit that is also in M. Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below).
Arithmetic of abelian varietiesIn mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or a family of abelian varieties. It goes back to the studies of Pierre de Fermat on what are now recognized as elliptic curves; and has become a very substantial area of arithmetic geometry both in terms of results and conjectures. Most of these can be posed for an abelian variety A over a number field K; or more generally (for global fields or more general finitely-generated rings or fields).
Metric spaceIn mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane.
Complete fieldIn mathematics, a complete field is a field equipped with a metric and complete with respect to that metric. Basic examples include the real numbers, the complex numbers, and complete valued fields (such as the p-adic numbers). The real numbers are the field with the standard euclidean metric . Since it is constructed from the completion of with respect to this metric, it is a complete field. Extending the reals by its algebraic closure gives the field (since its absolute Galois group is ).
Algebraic number fieldIn mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
Dirichlet's unit theoremIn mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are. The statement is that the group of units is finitely generated and has rank (maximal number of multiplicatively independent elements) equal to where r1 is the number of real embeddings and r2 the number of conjugate pairs of complex embeddings of K.
Langlands programIn representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics.