Publication

Stoichiometry modulates the optoelectronic functionality of Zinc Phosphide (Zn3-xP2+x)

Abstract

Predictive synthesis–structure–property relationships are at the core of materials design for novel applications. In this regard, correlations between the compositional stoichiometry variations and functional properties are essential for enhancing the performance of devices based on these materials. In this work, we investigate the effect of stoichiometry variations and defects on the structural and optoelectronic properties of monocrystalline zinc phosphide (Zn3P2), a promising compound for photovoltaic applications. We use experimental methods, such as electron and x-ray diffraction and Raman spectroscopy, along with density functional theory calculations, to showcase favorable creation of P interstitial defects over Zn vacancies in P-rich and Zn-poor compositional regions. Photoluminescence and absorption measurements show that these defects create additional energy level at about 180 meV above the valence band. Furthermore, they lead to the narrowing of the bandgap, due to the creation of band tails in the region of around 10-20 meV above the valence and below the conduction band. The ability of zinc phosphide to form off-stoichiometric compounds provides a new dimension promising opportunity for tunable functionality that benefits applications. In that regard, this study is crucial for further development of zinc phosphide and its application in optoelectronic and photovoltaic devices, and should pave the way for defect engineering in this kind of a material.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Photovoltaics
Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially used for electricity generation and as photosensors. A photovoltaic system employs solar modules, each comprising a number of solar cells, which generate electrical power. PV installations may be ground-mounted, rooftop-mounted, wall-mounted or floating.
Photovoltaic system
A photovoltaic system, also PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. It may also use a solar tracking system to improve the system's overall performance and include an integrated battery.
Valence and conduction bands
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states. On a graph of the electronic band structure of a semiconducting material, the valence band is located below the Fermi level, while the conduction band is located above it.
Show more
Related publications (79)

High-Quality Data Enabling Universality of Band Gap Descriptor and Discovery of Photovoltaic Perovskites

Alfredo Pasquarello, Haiyuan Wang, Wei Chen

Extensive machine-learning-assisted research has been dedicated to predicting band gaps for perovskites, driven by their immense potential in photovoltaics. Yet, the effectiveness is often hampered by the lack of high-quality band gap data sets, particular ...
Amer Chemical Soc2024

Zn3P2 as an earth-abundant photovoltaic material: from growth to device

Rajrupa Paul

The development of cost-effective and earth-abundant semiconducting materials is imperative for the sustainable deployment of photovoltaic technology. Zinc phosphide (Zn3P2) is a promising candidate for terawatt-scale electricity generation. It has a near- ...
EPFL2023

Nanoscale Growth Initiation as a Pathway to Improve the Earth-Abundant Absorber Zinc Phosphide

Anna Fontcuberta i Morral, Elias Zsolt Stutz, Jean-Baptiste Leran, Mahdi Zamani, Simon Robert Escobar Steinvall, Rajrupa Paul, Mirjana Dimitrievska

Growth approaches that limit the interface area between layers to nanoscale regions are emerging as a promising pathway to limit the interface defect formation due to mismatching lattice parameters or thermal expansion coefficient. Interfacial defect mitig ...
AMER CHEMICAL SOC2022
Show more
Related MOOCs (3)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.