Optimization Over Banach Spaces: A Unified View on Supervised Learning and Inverse Problems
Related publications (162)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
Artificial Intelligence (AI) techniques are considered the most advanced approaches for diagnosing faults in power transformers. Dissolved Gas Analysis (DGA) is the conventional approach widely adopted for diagnosing incipient faults in power transformers. ...
The Lizorkin space is well suited to the study of operators like fractional Laplacians and the Radon transform. In this paper, we show that the space is unfortunately not complemented in the Schwartz space. In return, we show that it is dense in C0(Double- ...
In this internship, I explore different optimization algorithms for lensless imaging. Lensless imaging is a new imaging technique that replaces the lens of a camera with a diffuser mask. This allows for simpler and cheaper camera hardware. However, the rec ...
There are various possibilities to realize coil winding designs for an inductive power transfer system. In order to achieve high power transfer efficiency and power density and explore trade-offs between the two, design optimization around the coil link is ...
Meta-learning is the core capability that enables intelligent systems to rapidly generalize their prior ex-perience to learn new tasks. In general, the optimization-based methods formalize the meta-learning as a bi-level optimization problem, that is a nes ...
Neural network approaches to approximate the ground state of quantum hamiltonians require the numerical solution of a highly nonlinear optimization problem. We introduce a statistical learning approach that makes the optimization trivial by using kernel me ...
The successes of deep learning for semantic segmentation can in be, in part, attributed to its scale: a notion that encapsulates the largeness of these computational architectures and the labeled datasets they are trained on. These resource requirements hi ...
Designing turbocompressors is a complex and challenging task, as it involves balancing conflicting objectives such as efficiency, stability, and robustness against manufacturing deviations. This paper proposes an integrated design methodology for turbocomp ...
We develop a principled approach to end-to-end learning in stochastic optimization. First, we show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map. Building on the insights of this an ...