Publication

Perturbed Fourier uniqueness and interpolation results in higher dimensions

Abstract

We obtain new Fourier interpolation and uniqueness results in all dimensions, extending methods and results by the first author and M. Sousa [11] and the second author [12]. We show that the only Schwartz function which, together with its Fourier transform, vanishes on surfaces close to the origin-centered spheres whose radii are square roots of integers, is the zero function. In the radial case, these surfaces are spheres with perturbed radii, while in the non-radial case, they can be graphs of continuous functions over the sphere. As an applica-tion, we translate our perturbed Fourier uniqueness results to perturbed Heisenberg uniqueness for the hyperbola, using the interrelation between these fields introduced and studied by Bakan, Hedenmalm, Montes-Rodriguez, Radchenko and Via-zovska [1].(c) 2022 Published by Elsevier Inc.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.