Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a form of supervised le ...
We describe the first gradient methods on Riemannian manifolds to achieve accelerated rates in the non-convex case. Under Lipschitz assumptions on the Riemannian gradient and Hessian of the cost function, these methods find approximate first-order critical ...
We consider the problem of provably finding a stationary point of a smooth function to be minimized on the variety of bounded-rank matrices. This turns out to be unexpectedly delicate. We trace the difficulty back to a geometric obstacle: On a nonsmooth se ...
The purpose of this thesis is to provide an intrinsic proof of a Gauss-Bonnet-Chern formula for complete Riemannian manifolds with finitely many conical singularities and asymptotically conical ends. A geometric invariant is associated to the link of both ...
We consider minimizing a nonconvex, smooth function f on a Riemannian manifold M. We show that a perturbed version of Riemannian gradient descent algorithm converges to a second-order stationary point (and hence is able to escape saddle point ...
In this paper, we provide a simple pedagogical proof of the existence of covariant renormalizations in Euclidean perturbative quantum field theory on closed Riemannian manifolds, following the Epstein–Glaser philosophy. We rely on a local method that allow ...
We consider minimizing a nonconvex, smooth function f on a Riemannian manifold M. We show that a perturbed version of Riemannian gradient descent algorithm converges to a second-order stationary point (and hence is able to escape saddle points on the manif ...
Let M be a C-2-smooth Riemannian manifold with boundary and N a complete C-2-smooth Riemannian manifold. We show that each stationary p-harmonic mapping u: M -> N, whose image lies in a compact subset of N, is locally C-1,C-alpha for some alpha is an eleme ...
This article presents an overview of robot learning and adaptive control applications that can benefit from a joint use of Riemannian geometry and probabilistic representations. The roles of Riemannian manifolds, geodesics and parallel transport in robotic ...
We derive a central limit theorem for the mean-square of random waves in the high-frequency limit over shrinking sets. Our proof applies to any compact Riemannian manifold of arbitrary dimension, thanks to the universality of the local Weyl law. The key te ...