Random walks and forbidden minors III: poly(d epsilon(-1))-time partition oracles for minor-free graph classes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Graph theory is an important topic in discrete mathematics. It is particularly interesting because it has a wide range of applications. Among the main problems in graph theory, we shall mention the following ones: graph coloring and the Hamiltonian circuit ...
The interference graph for a procedure in Static Single Assignment (SSA) Form is chordal. Since the k-colorability problem can be solved in polynomial-time for chordal graphs, this result has generated interest in SSA-based heuristics for spilling and coal ...
We provide a tight approximate characterization of the n-dimensional product multicommodity flow (PMF) region for a wireless network of n nodes. Separate characterizations in terms of the spectral properties of appropriate network graphs are obtained in bo ...
We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite graph. We define a notion of scaling using the graph analogue of the Fourier domain, namely the space of eigenfunctions forming the sp ...
We present a novel approach to 3D delineation of dendritic networks in noisy image stacks. We achieve a level of automation beyond that of state-of-the-art systems, which model dendrites as continuous tubular structures and postulate simple appearance mode ...
In this note we consider two coloring problems in mixed graphs, i.e., graphs containing edges and arcs. We show that they are both NP-complete in cubic planar bipartite graphs. This answers an open question from \cite{Ries2}. ...
Steinhaus graphs on n vertices are certain simple graphs in bijective correspondence with binary {0,1}-sequences of length n-1. A conjecture of Dymacek in 1979 states that the only nontrivial regular Steinhaus graphs are those corresponding to the periodic ...
Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. They are defined by the existence of a certain partition of vertices, which is NP-complete to decide for general graphs. It has been recently proved that for cographs, th ...
It is a long standing open problem to find an explicit description of the stable set polytope of claw-free graphs. Yet more than 20 years after the discovery of a polynomial algorithm for the maximum stable set problem for claw-free graphs, there is even n ...
Polar graphs are a natural extension of some classes of graphs like bipartite graphs, split graphs and complements of bipartite graphs. A graph is (s, k)-polar if there exists a partition A, B of its vertex set such that A induces a complete s-partite grap ...