Variational Bayesian methodsVariational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables".
Variational autoencoderIn machine learning, a variational autoencoder (VAE) is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling. It is part of the families of probabilistic graphical models and variational Bayesian methods. Variational autoencoders are often associated with the autoencoder model because of its architectural affinity, but with significant differences in the goal and mathematical formulation. Variational autoencoders are probabilistic generative models that require neural networks as only a part of their overall structure.
Generative modelIn statistical classification, two main approaches are called the generative approach and the discriminative approach. These compute classifiers by different approaches, differing in the degree of statistical modelling. Terminology is inconsistent, but three major types can be distinguished, following : A generative model is a statistical model of the joint probability distribution on given observable variable X and target variable Y; A discriminative model is a model of the conditional probability of the target Y, given an observation x; and Classifiers computed without using a probability model are also referred to loosely as "discriminative".
Discriminative modelDiscriminative models, also referred to as conditional models, are a class of logistical models used for classification or regression. They distinguish decision boundaries through observed data, such as pass/fail, win/lose, alive/dead or healthy/sick. Typical discriminative models include logistic regression (LR), conditional random fields (CRFs) (specified over an undirected graph), decision trees, and many others. Typical generative model approaches include naive Bayes classifiers, Gaussian mixture models, variational autoencoders, generative adversarial networks and others.
Generative adversarial networkA generative adversarial network (GAN) is a class of machine learning framework and a prominent framework for approaching generative AI. The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. In a GAN, two neural networks contest with each other in the form of a zero-sum game, where one agent's gain is another agent's loss. Given a training set, this technique learns to generate new data with the same statistics as the training set.
MotionIn physics, motion is the phenomenon by which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time. The branch of physics describing the motion of objects without reference to their cause is called kinematics, while the branch studying forces and their effect on motion is called dynamics.
HipparcosHipparcos was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial objects on the sky. This permitted the first high-precision measurements of the intrinsic brightnesses (compared to the less precise apparent brightness), proper motions, and parallaxes of stars, enabling better calculations of their distance and tangential velocity.
Proper motionProper motion is the astrometric measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more distant stars. The components for proper motion in the equatorial coordinate system (of a given epoch, often J2000.0) are given in the direction of right ascension (μα) and of declination (μδ). Their combined value is computed as the total proper motion (μ).
Stellar kinematicsIn astronomy, stellar kinematics is the observational study or measurement of the kinematics or motions of stars through space. Stellar kinematics encompasses the measurement of stellar velocities in the Milky Way and its satellites as well as the internal kinematics of more distant galaxies. Measurement of the kinematics of stars in different subcomponents of the Milky Way including the thin disk, the thick disk, the bulge, and the stellar halo provides important information about the formation and evolutionary history of our Galaxy.
Latent Dirichlet allocationIn natural language processing, Latent Dirichlet Allocation (LDA) is a Bayesian network (and, therefore, a generative statistical model) that explains a set of observations through unobserved groups, and each group explains why some parts of the data are similar. The LDA is an example of a Bayesian topic model. In this, observations (e.g., words) are collected into documents, and each word's presence is attributable to one of the document's topics. Each document will contain a small number of topics.