Scale invarianceIn physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality. The technical term for this transformation is a dilatation (also known as dilation). Dilatations can form part of a larger conformal symmetry. In mathematics, scale invariance usually refers to an invariance of individual functions or curves.
Orders of magnitude (frequency)The following list illustrates various frequencies, measured in hertz, according to decade in the order of their magnitudes, with the negative decades illustrated by events and positive decades by acoustic or electromagnetic uses.
PulsarA pulsar (from pulsating radio source) is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth (similar to the way a lighthouse can be seen only when the light is pointed in the direction of an observer), and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods.
Rankine scaleThe Rankine scale (ˈræŋkɪn) is an absolute scale of thermodynamic temperature named after the University of Glasgow engineer and physicist Macquorn Rankine, who proposed it in 1859. Similar to the Kelvin scale, which was first proposed in 1848, zero on the Rankine scale is absolute zero, but a temperature difference of one Rankine degree (°R or °Ra) is defined as equal to one Fahrenheit degree, rather than the Celsius degree used on the Kelvin scale. In converting from kelvin to degrees Rankine, 1 K = 9/5 °R or 1 K = 1.
KilonovaA kilonova (also called a macronova) is a transient astronomical event that occurs in a compact binary system when two neutron stars or a neutron star and a black hole merge. These mergers are thought to produce gamma-ray bursts and emit bright electromagnetic radiation, called "kilonovae", due to the radioactive decay of heavy r-process nuclei that are produced and ejected fairly isotropically during the merger process. The measured high sphericity of the kilonova AT2017gfo at early epochs was deduced from the blackbody nature of its spectrum.
FahrenheitThe Fahrenheit scale (ˈfæɹənˌhaɪt,_ˈfɑːɹ-) is a temperature scale based on one proposed in 1724 by the physicist Daniel Gabriel Fahrenheit (1686–1736). It uses the degree Fahrenheit (symbol: °F) as the unit. Several accounts of how he originally defined his scale exist, but the original paper suggests the lower defining point, 0 °F, was established as the freezing temperature of a solution of brine made from a mixture of water, ice, and ammonium chloride (a salt).
DeconfinementIn physics, deconfinement (in contrast to confinement) is a phase of matter in which certain particles are allowed to exist as free excitations, rather than only within bound states. Various examples exist in particle physics where certain gauge theories exhibit transitions between confining and deconfining phases. A prominent example, and the first case considered as such in theoretical physics, occurs at high energy in quantum chromodynamics when quarks and gluons are free to move over distances larger than a femtometer (the size of a hadron).