Publication

On Block Prediction For Learning-Based Point Cloud Compression

Touradj Ebrahimi, Evangelos Alexiou
2021
Conference paper
Abstract

Point clouds are among popular visual representations for immersive media. However, the vast amount of information generated during their acquisition requires effective compression for practical applications. Although relevant activities from standardization bodies have led to state-of-the-art compression using conventional methods, learning-based encoders have recently emerged as promising solutions with comparable performance while offering additional attractive features. Yet, there is still a large unexplored space for research that can lead to further advances. In this paper, we propose a block prediction module for bit-rate reduction of geometry-only point clouds. Our method exploits spatial redundancies at the decoding stage between block partitions in the point cloud, and predicts a query block using Generative Adversarial Networks. Results show performance improvements of the objective metrics at low bit-rates, after integration in a baseline auto-encoder architecture.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.