Locally simply connected spaceIn mathematics, a locally simply connected space is a topological space that admits a basis of simply connected sets. Every locally simply connected space is also locally path-connected and locally connected. The circle is an example of a locally simply connected space which is not simply connected. The Hawaiian earring is a space which is neither locally simply connected nor simply connected. The cone on the Hawaiian earring is contractible and therefore simply connected, but still not locally simply connected.
Topological ringIn mathematics, a topological ring is a ring that is also a topological space such that both the addition and the multiplication are continuous as maps: where carries the product topology. That means is an additive topological group and a multiplicative topological semigroup. Topological rings are fundamentally related to topological fields and arise naturally while studying them, since for example completion of a topological field may be a topological ring which is not a field.
Topological combinatoricsThe mathematical discipline of topological combinatorics is the application of topological and algebro-topological methods to solving problems in combinatorics. The discipline of combinatorial topology used combinatorial concepts in topology and in the early 20th century this turned into the field of algebraic topology. In 1978 the situation was reversed—methods from algebraic topology were used to solve a problem in combinatorics—when László Lovász proved the Kneser conjecture, thus beginning the new field of topological combinatorics.
Hodge conjectureIn mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties. In simple terms, the Hodge conjecture asserts that the basic topological information like the number of holes in certain geometric spaces, complex algebraic varieties, can be understood by studying the possible nice shapes sitting inside those spaces, which look like zero sets of polynomial equations.
Hodge structureIn mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968).
Totally disconnected spaceIn topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) are connected; in a totally disconnected space, these are the only connected subsets. An important example of a totally disconnected space is the Cantor set, which is homeomorphic to the set of p-adic integers. Another example, playing a key role in algebraic number theory, is the field Qp of p-adic numbers.
Semi-locally simply connectedIn mathematics, specifically algebraic topology, semi-locally simply connected is a certain local connectedness condition that arises in the theory of covering spaces. Roughly speaking, a topological space X is semi-locally simply connected if there is a lower bound on the sizes of the “holes” in X. This condition is necessary for most of the theory of covering spaces, including the existence of a universal cover and the Galois correspondence between covering spaces and subgroups of the fundamental group.
Separable spaceIn mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense.
Topological homomorphismIn functional analysis, a topological homomorphism or simply homomorphism (if no confusion will arise) is the analog of homomorphisms for the category of topological vector spaces (TVSs). This concept is of considerable importance in functional analysis and the famous open mapping theorem gives a sufficient condition for a continuous linear map between Fréchet spaces to be a topological homomorphism.
Societal collapseSocietal collapse (also known as civilizational collapse) is the fall of a complex human society characterized by the loss of cultural identity and of social complexity as an adaptive system, the downfall of government, and the rise of violence. Possible causes of a societal collapse include natural catastrophe, war, pestilence, famine, economic collapse, population decline or overshoot, mass migration, and sabotage by rival civilizations. A collapsed society may revert to a more primitive state, be absorbed into a stronger society, or completely disappear.