Espace localement simplement connexeEn mathématiques, un espace localement simplement connexe est un espace topologique qui admet une base d'ouverts simplement connexes. Tout espace localement simplement connexe est donc localement connexe par arcs et a fortiori localement connexe. Le cercle est localement simplement connexe mais pas simplement connexe. La boucle d'oreille hawaïenne n'est pas localement simplement connexe ni simplement connexe, puisqu'elle n'est même pas . Le cône de la boucle d'oreille hawaïenne est contractile donc simplement connexe, mais n'est pas localement simplement connexe.
Anneau topologiqueEn mathématiques, un anneau topologique est un anneau muni d'une topologie compatible avec les opérations internes, c'est-à-dire telle que l'addition, l'application opposée et la multiplication soient continues. Un corps topologique est un corps muni d'une topologie qui rend continues l'addition, la multiplication et l'application inverse. Ces structures étendent la notion de groupe topologique. Tous les corps de nombres usuels (rationnels, réels, complexes, p-adiques) ont une ou plusieurs topologies classiques qui en font des corps topologiques.
Combinatoire topologiqueLa combinatoire topologique est un domaine mathématique de la combinatoire qui applique des méthodes topologiques et algébrico-topologiques à la résolution de problèmes en combinatoire. La topologie combinatoire a utilisé des concepts combinatoires en topologie ; au début du , elle est devenue progressivement le domaine de la topologie algébrique. En 1978, la situation s'est inversée, et des méthodes de topologie algébrique ont été utilisées pour résoudre un problème en combinatoire, lorsque László Lovász a prouvé la conjecture de Kneser, initiant ainsi une nouvelle forme de la combinatoire topologique.
Conjecture de HodgeLa conjecture de Hodge est une des grandes conjectures de la géométrie algébrique. Elle établit un lien entre la topologie algébrique d'une variété algébrique complexe non singulière et sa géométrie décrite par des équations polynomiales qui définissent des sous-variétés. Elle provient d'un résultat du mathématicien W. V. D. Hodge qui, entre 1930 et 1940, a enrichi la description de la cohomologie de De Rham afin d'y inclure des structures présentes dans le cas des variétés algébriques (qui peuvent s'étendre à d'autres cas).
Hodge structureIn mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968).
Espace totalement discontinuEn mathématiques, plus précisément en topologie, un espace totalement discontinu est un espace topologique qui est « le moins connexe possible » au sens où il n'a pas de partie connexe non triviale : dans tout espace topologique, l'ensemble vide et les singletons sont connexes ; dans un espace totalement discontinu, ce sont les seules parties connexes. Un exemple populaire d'espace totalement discontinu est l'ensemble de Cantor. Un autre exemple, important en théorie algébrique des nombres, est le corps Qp des nombres p-adiques.
Semi-locally simply connectedIn mathematics, specifically algebraic topology, semi-locally simply connected is a certain local connectedness condition that arises in the theory of covering spaces. Roughly speaking, a topological space X is semi-locally simply connected if there is a lower bound on the sizes of the “holes” in X. This condition is necessary for most of the theory of covering spaces, including the existence of a universal cover and the Galois correspondence between covering spaces and subgroups of the fundamental group.
Espace séparableEn mathématiques, et plus précisément en topologie, un espace séparable est un espace topologique contenant un sous-ensemble dense et au plus dénombrable, c'est-à-dire contenant un ensemble fini ou dénombrable de points dont l'adhérence est égale à l'espace topologique tout entier. espace à base dénombrable Tout espace à base dénombrable est séparable. La réciproque est fausse, mais : Tout espace pseudométrisable séparable est à base dénombrable.Beaucoup d'espaces usuels sont de ce type.
Topological homomorphismIn functional analysis, a topological homomorphism or simply homomorphism (if no confusion will arise) is the analog of homomorphisms for the category of topological vector spaces (TVSs). This concept is of considerable importance in functional analysis and the famous open mapping theorem gives a sufficient condition for a continuous linear map between Fréchet spaces to be a topological homomorphism.
Déclin de civilisationvignette|Destruction, extrait du Cours de l’Empire de Thomas Cole (1836).|342x342px Le déclin de civilisation est la chute d'une société humaine complexe, caractérisée par la perte de son identité culturelle et de sa complexité socio-économique, la chute du gouvernement et la montée de la violence. Les causes possibles d'un déclin d'une civilisation comprennent les catastrophes naturelles, la guerre, les épidémies (peste), la famine et la dépopulation.