Self-Supervision By Prediction For Object Discovery In Videos
Related publications (74)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this study, we examine the potential of several self-supervised deep learning models in predicting forest attributes and detecting forest changes using ESA Sentinel-1 and Sentinel-2 images. The performance of the proposed deep learning models is compare ...
The Institute of Electrical and Electronics Engineers, Inc2023
Test time augmentation has been shown to be an effective approach to combat domain shifts in deep learning. Despite their promising performance levels, the interpretability of the underlying used models is however low. Saliency maps have been widely used i ...
The success of self-supervised learning in computer vision and natural language processing has motivated pretraining methods on tabular data. However, most existing tabular self-supervised learning models fail to leverage information across multiple data t ...
Microsurgical manipulations are key experimental techniques in life science research, particularly in embryology. These techniques are most often performed manually by highly skilled scientists, posing limitations on speed, precision, and reproducibility. ...
In several machine learning settings, the data of interest are well described by graphs. Examples include data pertaining to transportation networks or social networks. Further, biological data, such as proteins or molecules, lend themselves well to graph- ...
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization. Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns, elimina ...
Machine learning has become the state of the art for the solution of the diverse inverse problems arising from computer vision and medical imaging, e.g. denoising, super-resolution, de-blurring, reconstruction from scanner data, quantitative magnetic reson ...
In this paper, we propose and compare personalized models for Productive Engagement (PE) recognition. PE is defined as the level of engagement that maximizes learning. Previously, in the context of robot-mediated collaborative learning, a framework of prod ...
Classic image-restoration algorithms use a variety of priors, either implicitly or explicitly. Their priors are hand-designed and their corresponding weights are heuristically assigned. Hence, deep learning methods often produce superior image restoration ...
Metal-organic frameworks (MOFs) are a class of crystalline porous materials that exhibit a vast chemical space owing to their tunable molecular building blocks with diverse topologies. An unlimited number of MOFs can, in principle, be synthesized. Machine ...