Publication

Modelling electronic transport in monocrystalline metal oxide gas sensors: from the surface kinetics to the experimental response

Abstract

Gas sensing systems and devices based on metal oxides are widely spreading due to their high performance in terms of sensor response and relatively low costs. Despite several experimental studies, as well as molecular simulations, are available in the literature, a tool that can quickly predict the macroscopic sensor response, and potentially be used for predictive purposes, is still missing. In this work, we present a modelling approach based on finite-element simulations, using material electrical properties available in the literature. In a first approach, we derive the surface electron trap concentration from fitting the global sensor response. Then, we improve the model by eliminating this fitting and considering the actual time-dependent experimental response. We consider sensors based on single SnO2 nanowires and show how our model predicts with a good agreement the experimental response vs. NO2, as a function of the working temperature and gas concentration, and also provides many other physical quantities of interest, such as the conduction band edge bending, the space charge and the width of the depletion layer. We further discuss ideas for improving the model and thus increasing its predictive potential.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Depletion region
In semiconductor physics, the depletion region, also called depletion layer, depletion zone, junction region, space charge region or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have been diffused away, or have been forced away by an electric field. The only elements left in the depletion region are ionized donor or acceptor impurities. This region of uncovered positive and negative ions is called the depletion region due to the depletion of carriers in this region, leaving none to carry a current.
Predictive modelling
Predictive modelling uses statistics to predict outcomes. Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam.
Predictive analytics
Predictive analytics is a form of business analytics applying machine learning to generate a predictive model for certain business applications. As such, it encompasses a variety of statistical techniques from predictive modeling and machine learning that analyze current and historical facts to make predictions about future or otherwise unknown events. It represents a major subset of machine learning applications; in some contexts, it is synonymous with machine learning.
Show more
Related publications (33)

Momentum-Space Imaging of Ultra-Thin Electron Liquids in δ-Doped Silicon

Gabriel Aeppli, Nicolò D'Anna

Two-dimensional dopant layers (δ-layers) in semiconductors provide the high-mobility electron liquids (2DELs) needed for nanoscale quantum-electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs ...
WILEY2023

Murunskite - a new class of functional material

Davor Tolj

The subject of the present work is discovery and in-depth characterization of a new class of functional materials. Tuning of the bond polarity and orbital occupation with a goal of establishing balance between localization and delocalization of electrons - ...
EPFL2023

Intrinsic Polarization Super Junctions: Design of Single and Multichannel GaN Structures

Elison de Nazareth Matioli, Luca Nela, Catherine Erine, Amirmohammad Miran Zadeh

Super junctions (SJs) have enabled unprecedented performance in Silicon power devices, which could be further improved by applying this concept to wide bandgap semiconductors like gallium nitride (GaN). Currently, polarization super junctions (PSJs) are th ...
2022
Show more
Related MOOCs (29)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.