Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...
Graph sparsification has been studied extensively over the past two decades, culminating in spectral sparsifiers of optimal size (up to constant factors). Spectral hypergraph sparsification is a natural analogue of this problem, for which optimal bounds on ...
We consider the problem of inferring a matching hidden in a weighted random k-hypergraph. We assume that the hyperedges' weights are random and distributed according to two different densities conditioning on the fact that they belong to the hidden matchin ...
We approach the graph generation problem from a spectral perspective by first generating the dominant parts of the graph Laplacian spectrum and then building a graph matching these eigenvalues and eigenvectors. Spectral conditioning allows for direct model ...
One of the most basic graph problems, All-Pairs Shortest Paths (APSP) is known to be solvable in n^{3-o(1)} time, and it is widely open whether it has an O(n^{3-ε}) time algorithm for ε > 0. To better understand APSP, one often strives to obtain subcubic t ...
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik2021
, ,
A motif is a frequently occurring subgraph of a given directed or undirected graph G (Milo et al.). Motifs capture higher order organizational structure of G beyond edge relationships, and, therefore, have found wide applications such as in graph clusterin ...
IEEE COMPUTER SOC2022
,
Cut and spectral sparsification of graphs have numerous applications, including e.g. speeding up algorithms for cuts and Laplacian solvers. These powerful notions have recently been extended to hypergraphs, which are much richer and may offer new applicati ...
ASSOC COMPUTING MACHINERY2021
, ,
With the advent of data science, the analysis of network or graph data has become a very timely research problem. A variety of recent works have been proposed to generalize neural networks to graphs, either from a spectral graph theory or a spatial perspec ...
This thesis focuses on the maximum matching problem in modern computational settings where the algorithms have to make decisions with partial information.First, we consider two stochastic models called query-commit and price-of-information where the algori ...
EPFL2021
,
Graph neural networks (GNN) are very popular methods in machine learning and have been applied very successfully to the prediction of the properties of molecules and materials. First-order GNNs are well known to be incomplete, i.e. there exist graphs that ...