Publication

High-Throughput Sizing, Counting, and Elemental Analysis of Anisotropic Multimetallic Nanoparticles with Single-Particle Inductively Coupled Plasma Mass Spectrometry

Abstract

Nanoparticles (NPs) have wide applications in physical and chemical processes, and their individual properties (e.g., shape, size, and composition) and ensemble properties (e.g., distribution and homogeneity) can significantly affect the performance. However, the extrapolation of information from a single particle to the ensemble remains a challenge due to the lack of suitable techniques. Herein, we report a high-throughput single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS)-based protocol to simultaneously determine the size, count, and elemental makeup of several thousands of (an)isotropic NPs independent of composition, size, shape, and dispersing medium with atomistic precision in a matter of minutes. By introducing highly diluted nebulized aqueous dispersions of NPs directly into the plasma torch of an ICP-MS instrument, individual NPs are atomized and ionized, resulting in ion plumes that can be registered by the mass analyzer. Our proposed protocol includes a phase transfer step for NPs synthesized in organic media, which are otherwise incompatible with ICP-MS instruments, and a modeling tool that extends the measurement of particle morphologies beyond spherical to include cubes, truncated octahedra, and tetrahedra, exemplified by anisotropic Cu NPs. Finally, we demonstrate the versatility of our method by studying the doping of bulk-dilute (

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.