In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat bath, so that the states of the system will differ in total energy. The principal thermodynamic variable of the canonical ensemble, determining the probability distribution of states, is the absolute temperature (symbol: T). The ensemble typically also depends on mechanical variables such as the number of particles in the system (symbol: N) and the system's volume (symbol: V), each of which influence the nature of the system's internal states. An ensemble with these three parameters is sometimes called the NVT ensemble. The canonical ensemble assigns a probability P to each distinct microstate given by the following exponential: where E is the total energy of the microstate, and k is the Boltzmann constant. The number F is the free energy (specifically, the Helmholtz free energy) and is a constant for the ensemble. However, the probabilities and F will vary if different N, V, T are selected. The free energy F serves two roles: first, it provides a normalization factor for the probability distribution (the probabilities, over the complete set of microstates, must add up to one); second, many important ensemble averages can be directly calculated from the function F(N, V, T). An alternative but equivalent formulation for the same concept writes the probability as using the canonical partition function rather than the free energy. The equations below (in terms of free energy) may be restated in terms of the canonical partition function by simple mathematical manipulations. Historically, the canonical ensemble was first described by Boltzmann (who called it a holode) in 1884 in a relatively unknown paper. It was later reformulated and extensively investigated by Gibbs in 1902. The canonical ensemble is the ensemble that describes the possible states of a system that is in thermal equilibrium with a heat bath (the derivation of this fact can be found in Gibbs).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (31)
MSE-639: Statistical methods in atomistic computer simulations
The course gives an overview of atomistic simulation methods, combining theoretical lectures and hands-on sessions. It covers the basics (molecular dynamics and monte carlo sampling) and also more adv
AR-302(n): Studio BA6 (Lapierre)
En poursuivant notre exploration de l'architecture du stockage, nous nous pencherons sur l'opposition entre formalisme et réalisme dans le cadre d'un projet de transformation de logements dans la vill
AR-402(n): Studio MA2 (Lapierre)
En poursuivant notre exploration de l'architecture du stockage, nous nous pencherons sur l'opposition entre formalisme et réalisme dans le cadre d'un projet de transformation de logements dans la vill
Show more
Related lectures (91)
Perfect Gas: Microcanonical Ensemble
Covers the microcanonical ensemble, phase space, and the equation of a perfect gas.
Quantum Source Coding
Covers entropic notions in quantum sources, Shannon entropy, Von Neumann entropy, and source coding.
Ensembles and Partition Functions
Covers ensembles, partition functions, and distributions in statistical thermodynamics.
Show more
Related publications (128)
Related concepts (17)
Temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
Partition function (statistical mechanics)
In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.
Boltzmann distribution
In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution) is a probability distribution or probability measure that gives the probability that a system will be in a certain state as a function of that state's energy and the temperature of the system. The distribution is expressed in the form: where pi is the probability of the system being in state i, exp is the exponential function, εi is the energy of that state, and a constant kT of the distribution is the product of the Boltzmann constant k and thermodynamic temperature T.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.