Testing hypotheses suggested by the dataIn statistics, hypotheses suggested by a given dataset, when tested with the same dataset that suggested them, are likely to be accepted even when they are not true. This is because circular reasoning (double dipping) would be involved: something seems true in the limited data set; therefore we hypothesize that it is true in general; therefore we wrongly test it on the same, limited data set, which seems to confirm that it is true.
Bayesian inferenceBayesian inference (ˈbeɪziən or ˈbeɪʒən ) is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.
Universal generalizationIn predicate logic, generalization (also universal generalization or universal introduction, GEN) is a valid inference rule. It states that if has been derived, then can be derived. The full generalization rule allows for hypotheses to the left of the turnstile, but with restrictions. Assume is a set of formulas, a formula, and has been derived. The generalization rule states that can be derived if is not mentioned in and does not occur in . These restrictions are necessary for soundness.
List of rules of inferenceThis is a list of rules of inference, logical laws that relate to mathematical formulae. Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
Andrey MarkovAndrey Andreyevich Markov (14 June 1856 – 20 July 1922) was a Russian mathematician best known for his work on stochastic processes. A primary subject of his research later became known as the Markov chain. He was also a strong, close to master-level chess player. Markov and his younger brother Vladimir Andreevich Markov (1871–1897) proved the Markov brothers' inequality. His son, another Andrey Andreyevich Markov (1903–1979), was also a notable mathematician, making contributions to constructive mathematics and recursive function theory.
Chebyshev's inequalityIn probability theory, Chebyshev's inequality (also called the Bienaymé–Chebyshev inequality) guarantees that, for a wide class of probability distributions, no more than a certain fraction of values can be more than a certain distance from the mean. Specifically, no more than 1/k2 of the distribution's values can be k or more standard deviations away from the mean (or equivalently, at least 1 − 1/k2 of the distribution's values are less than k standard deviations away from the mean).
Social inequalitySocial inequality occurs when resources in a given society are distributed unevenly, typically through norms of allocation, that engender specific patterns along lines of socially defined categories of persons. It poses and creates a gender gap between individuals that limits the accessibility that women have within society. The differentiation preference of access to social goods in the society is brought about by power, religion, kinship, prestige, race, ethnicity, gender, age, sexual orientation, and class.
Hölder's inequalityIn mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces. The numbers p and q above are said to be Hölder conjugates of each other. The special case p = q = 2 gives a form of the Cauchy–Schwarz inequality. Hölder's inequality holds even if 1 is infinite, the right-hand side also being infinite in that case. Conversely, if f is in Lp(μ) and g is in Lq(μ), then the pointwise product fg is in L1(μ).
Cost engineeringCost engineering is "the engineering practice devoted to the management of project cost, involving such activities as estimating, cost control, cost forecasting, investment appraisal and risk analysis". "Cost Engineers budget, plan and monitor investment projects. They seek the optimum balance between cost, quality and time requirements." Skills and knowledge of cost engineers are similar to those of quantity surveyors. In many industries, cost engineering is synonymous with project controls.
Triangle inequalityIn mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but some authors, especially those writing about elementary geometry, will exclude this possibility, thus leaving out the possibility of equality. If x, y, and z are the lengths of the sides of the triangle, with no side being greater than z, then the triangle inequality states that with equality only in the degenerate case of a triangle with zero area.