Haar measureIn mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This measure was introduced by Alfréd Haar in 1933, though its special case for Lie groups had been introduced by Adolf Hurwitz in 1897 under the name "invariant integral". Haar measures are used in many parts of analysis, number theory, group theory, representation theory, statistics, probability theory, and ergodic theory.
Boolean algebraIn mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as ∧, disjunction (or) denoted as ∨, and the negation (not) denoted as ¬.
Moduli schemeIn mathematics, a moduli scheme is a moduli space that exists in the developed by Alexander Grothendieck. Some important moduli problems of algebraic geometry can be satisfactorily solved by means of scheme theory alone, while others require some extension of the 'geometric object' concept (algebraic spaces, algebraic stacks of Michael Artin). Work of Grothendieck and David Mumford (see geometric invariant theory) opened up this area in the early 1960s.
Gaussian rationalIn mathematics, a Gaussian rational number is a complex number of the form p + qi, where p and q are both rational numbers. The set of all Gaussian rationals forms the Gaussian rational field, denoted Q(i), obtained by adjoining the imaginary number i to the field of rationals Q. The field of Gaussian rationals provides an example of an algebraic number field, which is both a quadratic field and a cyclotomic field (since i is a 4th root of unity).
Rational pointIn number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point. Understanding rational points is a central goal of number theory and Diophantine geometry. For example, Fermat's Last Theorem may be restated as: for n > 2, the Fermat curve of equation has no other rational points than (1, 0), (0, 1), and, if n is even, (–1, 0) and (0, –1).
Bicomplex numberIn abstract algebra, a bicomplex number is a pair (w, z) of complex numbers constructed by the Cayley–Dickson process that defines the bicomplex conjugate , and the product of two bicomplex numbers as Then the bicomplex norm is given by a quadratic form in the first component. The bicomplex numbers form a commutative algebra over C of dimension two, which is isomorphic to the direct sum of algebras C ⊕ C.
Kissing numberIn geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement of spheres) in a given space, a kissing number can also be defined for each individual sphere as the number of spheres it touches. For a lattice packing the kissing number is the same for every sphere, but for an arbitrary sphere packing the kissing number may vary from one sphere to another.
Field of fractionsIn abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements. The field of fractions of an integral domain is sometimes denoted by or , and the construction is sometimes also called the fraction field, field of quotients, or quotient field of .