**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Haar measure

Summary

In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.
This measure was introduced by Alfréd Haar in 1933, though its special case for Lie groups had been introduced by Adolf Hurwitz in 1897 under the name "invariant integral". Haar measures are used in many parts of analysis, number theory, group theory, representation theory, statistics, probability theory, and ergodic theory.
Preliminaries
Let (G, \cdot) be a locally compact Hausdorff topological group. The \sigma-algebra generated by all open subsets of G is called the Borel algebra. An element of the Borel algebra is called a Borel set. If g is an element of G and S is a subset of G, then we define the left and right translates of S by g as follows:

- Left translate:

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (2)

Related units

No results

Related publications (10)

Loading

Loading

Loading

Related concepts (56)

Topological group

In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition fo

Group (mathematics)

In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inver

Lie group

In mathematics, a Lie group (pronounced liː ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract conce

Related courses (12)

MATH-603: Subconvexity, Periods and Equidistribution

This course is a modern exposition of "Duke's Theorems" which describe the distribution of representations of large integers by a fixed ternary quadratic form. It will be the occasion to introduce the students to the adelic language, the theory of automorphic forms and their associated L-functions

MATH-512: Optimization on manifolds

We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemannian geometry (with a focus dictated by pragmatic concerns). We also discuss several applications.

MATH-494: Topics in arithmetic geometry

P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applications, notably we will prove rationality of the Weil Zeta function.

In this thesis we compute motivic classes of hypertoric varieties, Nakajima quiver varieties and open de Rham spaces in a certain localization of the Grothendieck ring of varieties. Furthermore we study the $p$-adic pushforward of the Haar measure under a hypertoric moment map $\mu$. This leads to an explicit formula for the Igusa zeta function $\FI_\mu(s)$ of $\mu$, and in particular to a small set of candidate poles for $\FI_\mu(s)$. We also study various properties of the residue at the largest pole of $\FI_\mu(s)$. Finally, if $\mu$ is constructed out of a quiver $\Gamma$ we give a conjectural description of this residue in terms of indecomposable representations of $\Gamma$ over finite depth rings. The connections between these different results is the method of proof. At the heart of each theorem lies a motivic or $p$-adic volume computation, which is only possible due to some surprising cancellations. These cancellations are reminiscent of a result in classical symplectic geometry by Duistermaat and Heckman on the localization of the Liouville measure, hence the title of the thesis.

Assyr Abdulle, Andrea Di Blasio

A new strategy based on numerical homogenization and Bayesian techniques for solving multiscale inverse problems is introduced. We consider a class of elliptic problems which vary at a microscopic scale, and we aim at recovering the highly oscillatory tensor from measurements of the fine scale solution at the boundary, using a coarse model based on numerical homogenization and model order reduction. We provide a rigorous Bayesian formulation of the problem, taking into account different possibilities for the choice of the prior measure. We prove well-posedness of the effective posterior measure and, by means of G-convergence, we establish a link between the effective posterior and the fine scale model. Several numerical experiments illustrate the efficiency of the proposed scheme and confirm the theoretical findings.

2020Gaussian measures μβ,ν are associated to some stochastic 2D models of turbulence.They are Gibbs measures constructed by means of an invariant quantity of the system depending on some parameter β (related to the 2D nature of the fluid) and the viscosity ν.We prove the existence and the uniqueness of the global flow for the stochastic viscous system; moreover the measure μβ,ν is invariant for this flow and is the unique invariant measure. Finally, we prove that the deterministic inviscid equation has a μβ,ν-stationary solution (for any ν >0).

Related lectures (17)