We consider correlators for the flux of energy and charge in the background of operators with large global U(1) charge in conformal field theory (CFT). It has recently been shown that the corresponding Euclidean correlators generically admit a semiclassica ...
The expectation value of a smooth conformal line defect in a CFT is a conformal invariant functional of its path in space-time. For example, in large N holographic theories, these fundamental observables are dual to the open-string partition function in Ad ...
Within the AdS/CFT correspondence, we identify a class of CFT operators which represent diff-invariant and approximately local observables in the gravitational dual. Provided that the bulk state breaks all asymptotic symmetries, we show that these operator ...
In ferroelectric switching, an applied electric field switches the system between two polar symmetry-equivalent states. In this work, we use first-principles calculations to explore the polar states of hydrogen-doped samarium nickelate (SNO) at a concentra ...
We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
Using ultrafast broad-band transient absorption (TA) spectroscopy of photoexcited MAPbBr3 thin films with probe continua in the visible and the mid- to deep-ultraviolet (UV) ranges, we capture the ultrafast renormalization at the fundamental gap at the R s ...
Quantum Field Theories are a central object of interest of modern physics, describing fundamental interactions of matter. However, current methods give limited insight into strongly coupling theories. S-matrix bootstrap program, described in this thesis, a ...
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
Modern condensed matter physics relies on the concept of topology to classify matter, from quantum Hall systems to topological insulators. Engineered systems, benefiting from synthetic dimensions, can potentially give access to topological states predicted ...
American Association for the Advancement of Science2024
Mechanical oscillators can exhibit modes with ultra-low energy dissipation and compact form factors due to the slow velocity of acoustic waves, and are already used in applications ranging from timing to wireless filters. Over the past decade, novel ways i ...