PolaronA polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.
Hubbard modelThe Hubbard model is an approximate model used to describe the transition between conducting and insulating systems. It is particularly useful in solid-state physics. The model is named for John Hubbard. The Hubbard model states that each electron experiences competing forces: one pushes it to tunnel to neighboring atoms, while the other pushes it away from its neighbors. Its Hamiltonian thus has two terms: a kinetic term allowing for tunneling ("hopping") of particles between lattice sites and a potential term reflecting on-site interaction.
Electronic band structureIn solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called band gaps or forbidden bands). Band theory derives these bands and band gaps by examining the allowed quantum mechanical wave functions for an electron in a large, periodic lattice of atoms or molecules.
Mind–body problemThe mind–body problem is a philosophical problem concerning the relationship between thought and consciousness in the human mind, and the body. The issue is this. Though it is obvious that mental events and physical events are somehow related, it is not obvious what the nature of this relation is. For example, it is obvious that feelings of sadness (which are mental events) will cause people to cry (which is a physical state of the body), or that finding a joke funny (a mental event) will cause one to laugh (another bodily state), or that feelings of pain (in the mind) will cause avoidance behaviours (in the body), and so on.
Strongly correlated materialStrongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge separation. The essential feature that defines these materials is that the behavior of their electrons or spinons cannot be described effectively in terms of non-interacting entities.
Self-energyIn quantum field theory, the energy that a particle has as a result of changes that it causes in its environment defines self-energy , and represents the contribution to the particle's energy, or effective mass, due to interactions between the particle and its environment. In electrostatics, the energy required to assemble the charge distribution takes the form of self-energy by bringing in the constituent charges from infinity, where the electric force goes to zero.
Density functional theoryDensity-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function. In the case of DFT, these are functionals of the spatially dependent electron density.
Model selectionModel selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. In the context of learning, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre-existing set of data is considered. However, the task can also involve the design of experiments such that the data collected is well-suited to the problem of model selection.
N-body problemIn physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars. In the 20th century, understanding the dynamics of globular cluster star systems became an important n-body problem. The n-body problem in general relativity is considerably more difficult to solve due to additional factors like time and space distortions.
Bayesian information criterionIn statistics, the Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC). When fitting models, it is possible to increase the maximum likelihood by adding parameters, but doing so may result in overfitting.