Self-Interaction and Polarons in Density Functional Theory
Related publications (39)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We use piecewise-linear functionals to study the polaron energy landscape and hopping rates in beta-Ga2O3, which we adopt as an example of an anisotropic material hosting multiple polaronic states. We illustrate various functionals for polaron localization ...
We present an orbital-resolved extension of the Hubbard U correction to density-functional theory (DFT). Compared to the conventional shell-averaged approach, the prediction of energetic, electronic and structural properties is strongly improved, particula ...
Amer Chemical Soc2024
,
Through the use of the piecewise-linearity condition of the total energy, we correct the self-interaction for the study of polarons by constructing nonempirical functionals at the semilocal level of theory. We consider two functionals, the gamma DFT and mu ...
Aip Publishing2024
,
Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials' features as spectroscopic fingerprints. Nevertheless, these measurements freq ...
Nature Portfolio2024
Empowered by ever-increasing computational power and algorithmic developments, electronic-structure simulations continue to drive research and innovation in materials science. In this context, ab-initio calculations offer an unbiased platform for the under ...
Since the preliminary work of Anisimov and co-workers, the Hubbard corrected DFT+U functional has been used for predicting properties of correlated materials by applying on-site effective Coulomb interactions to specific orbitals. However, the determinatio ...
We develop a unified theoretical framework encompassing one-body and many-body forms of self-interaction. We find an analytic expression for both the one-body and the many-body self-interaction energies, and quantitatively connect the two expressions throu ...
The magnetic, noncollinear parametrization of Dudarev's DFT + U method is generalized to fully relativistic ultrasoft pseudopotentials. We present the definition of the DFT + U total energy functional and the calculation of forces and stresses in the case ...
College Pk2023
,
We address the many-body self-interaction in relation to polarons in density functional theory. Our study provides (i) a unified theoretical framework encompassing many-body and one-body forms of self-interaction and (ii) an efficient semilocal scheme for ...
2022
, , ,
In recent years, we have been witnessing a paradigm shift in computational materials science. In fact, traditional methods, mostly developed in the second half of the XXth century, are being complemented, extended, and sometimes even completely replaced by ...