Cauchy's integral theoremIn mathematics, the Cauchy integral theorem (also known as the Cauchy–Goursat theorem) in complex analysis, named after Augustin-Louis Cauchy (and Édouard Goursat), is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if is holomorphic in a simply connected domain Ω, then for any simply closed contour in Ω, that contour integral is zero.
Elliptic integralIn integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function f which can be expressed in the form where R is a rational function of its two arguments, P is a polynomial of degree 3 or 4 with no repeated roots, and c is a constant.
Infinite productIn mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product is defined to be the limit of the partial products a1a2...an as n increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here.
Stokes' theoremStokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: The line integral of a vector field over a loop is equal to the flux of its curl through the enclosed surface.
Binary logarithmIn mathematics, the binary logarithm (log2n) is the power to which the number 2 must be raised to obtain the value n. That is, for any real number x, For example, the binary logarithm of 1 is 0, the binary logarithm of 2 is 1, the binary logarithm of 4 is 2, and the binary logarithm of 32 is 5. The binary logarithm is the logarithm to the base 2 and is the inverse function of the power of two function. As well as log2, an alternative notation for the binary logarithm is lb (the notation preferred by ISO 31-11 and ISO 80000-2).
Bernhard RiemannGeorg Friedrich Bernhard Riemann (ˈɡeːɔʁk ˈfʁiːdʁɪç ˈbɛʁnhaʁt ˈʁiːman; 17 September 1826 – 20 July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis.
Picard theoremIn complex analysis, Picard's great theorem and Picard's little theorem are related theorems about the range of an analytic function. They are named after Émile Picard. Little Picard Theorem: If a function is entire and non-constant, then the set of values that assumes is either the whole complex plane or the plane minus a single point. Sketch of Proof: Picard's original proof was based on properties of the modular lambda function, usually denoted by , and which performs, using modern terminology, the holomorphic universal covering of the twice punctured plane by the unit disc.
Lerch zeta functionIn mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887. The Lerch zeta function is given by A related function, the Lerch transcendent, is given by The transcendent only converges for any real number , where: or and .
Hankel contourIn mathematics, a Hankel contour is a path in the complex plane which extends from (+∞,δ), around the origin counter clockwise and back to (+∞,−δ), where δ is an arbitrarily small positive number. The contour thus remains arbitrarily close to the real axis but without crossing the real axis except for negative values of x. The Hankel contour can also be represented by a path that has mirror images just above and below the real axis, connected to a circle of radius ε, centered at the origin, where ε is an arbitrarily small number.
TheoremIn mathematics, a theorem is a statement that has been proved, or can be proved. The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic.