Green's theoremIn vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem. Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C. If L and M are functions of (x, y) defined on an open region containing D and have continuous partial derivatives there, then where the path of integration along C is anticlockwise.
FormulaIn science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a chemical formula. The informal use of the term formula in science refers to the general construct of a relationship between given quantities. The plural of formula can be either formulas (from the most common English plural noun form) or, under the influence of scientific Latin, formulae (from the original Latin). In mathematics, a formula generally refers to an equation relating one mathematical expression to another, with the most important ones being mathematical theorems.
Trigonometric integralIn mathematics, trigonometric integrals are a family of integrals involving trigonometric functions. The different sine integral definitions are Note that the integrand is the sinc function, and also the zeroth spherical Bessel function. Since sinc is an even entire function (holomorphic over the entire complex plane), Si is entire, odd, and the integral in its definition can be taken along any path connecting the endpoints. By definition, Si(x) is the antiderivative of sin x / x whose value is zero at x = 0, and si(x) is the antiderivative whose value is zero at x = ∞.
Local zeta functionIn number theory, the local zeta function Z(V, s) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as where V is a non-singular n-dimensional projective algebraic variety over the field Fq with q elements and Nm is the number of points of V defined over the finite field extension Fqm of Fq. Making the variable transformation u = q−s, gives as the formal power series in the variable .
Zeros and polesIn complex analysis (a branch of mathematics), a pole is a certain type of singularity of a complex-valued function of a complex variable. It is the simplest type of non-removable singularity of such a function (see essential singularity). Technically, a point z0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z0. A function f is meromorphic in an open set U if for every point z of U there is a neighborhood of z in which either f or 1/f is holomorphic.
Twin primeA 'twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin' or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger.
Divergent seriesIn mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series The divergence of the harmonic series was proven by the medieval mathematician Nicole Oresme.
Fubini's theoremIn mathematical analysis, Fubini's theorem is a result that gives conditions under which it is possible to compute a double integral by using an iterated integral, introduced by Guido Fubini in 1907. One may switch the order of integration if the double integral yields a finite answer when the integrand is replaced by its absolute value. Fubini's theorem implies that two iterated integrals are equal to the corresponding double integral across its integrands.
Tangent half-angle formulaIn trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle onto a line. Among these formulas are the following: From these one can derive identities expressing the sine, cosine, and tangent as functions of tangents of half-angles: Using double-angle formulae and the Pythagorean identity gives Taking the quotient of the formulae for sine and cosine yields Combining the Pythagorean identity with the double-angle formula for the cosine, rearranging, and taking the square roots yields and which, upon division gives Alternatively, It turns out that the absolute value signs in these last two formulas may be dropped, regardless of which quadrant α is in.
Aliquot sumIn number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number. For example, the proper divisors of 12 (that is, the positive divisors of 12 that are not equal to 12) are 1, 2, 3, 4, and 6, so the aliquot sum of 12 is 16 i.