Analysis of a Class of Multilevel Markov Chain Monte Carlo Algorithms Based on Independent Metropolis–Hastings
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of output quantities of complex differential models with random input data, using gradient-based approaches in combination with the Multi-Level Monte Carlo (MLMC) method ...
In causal inference the effect of confounding may be controlled using regression adjustment in an outcome model, propensity score adjustment, inverse probability of treatment weighting or a combination of these. Approaches based on modelling the treatment ...
Biological oscillators are pervasive in biology, covering all aspects of life from enzyme kinetics reactions to population dynamics. Although their behaviour has been intensively studied in the last decades, the recent advances of high-throughput experimen ...
Humans are comparison machines: comparing and choosing an item among a set of alternatives (such as objects or concepts) is arguably one of the most natural ways for us to express our preferences and opinions. In many applications, the analysis of data con ...
In this work, we present, analyze, and implement a class of Multi-Level Markov chain Monte Carlo (ML-MCMC) algorithms based on independent Metropolis-Hastings proposals for Bayesian inverse problems. In this context, the likelihood function involves solvin ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
Accurate spatiotemporal modeling of conditions leading to moderate and large wildfires provides better understanding of mechanisms driving fire-prone ecosystems and improves risk management. Here, we develop a joint model for the occurrence intensity and t ...
This thesis is devoted to the construction, analysis, and implementation of two types of hierarchical Markov Chain Monte Carlo (MCMC) methods for the solution of large-scale Bayesian Inverse Problems (BIP).The first hierarchical method we present is based ...
In the current work we present two generalizations of the Parallel Tempering algorithm, inspired by the so-called continuous-time Infinite Swapping algorithm. Such a method, found its origins in the molecular dynamics community, and can be understood as th ...
The Brown-Resnick max-stable process has proven to be well suited for modeling extremes of complex environmental processes, but in many applications its likelihood function is intractable and inference must be based on a composite likelihood, thereby preve ...