Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mixed precision variant of LOBPCG that uses a (sparse) Cholesky factorization of A computed in lower precision as the preconditioner. To further enhance performance, a mixed precision orthogonalization strategy is proposed. To analyze the impact of reducing precision in the preconditioner on performance, we carry out a rounding error and convergence analysis of PINVIT, a simplified variant of LOBPCG. Our theoretical results predict and our numerical experiments confirm that the impact on convergence remains marginal. In practice, our mixed precision LOBPCG algorithm typically reduces the computation time by a factor of 1.4-2.0 on both CPUs and GPUs.
Daniel Kressner, Alice Cortinovis
,