Quantum gravityQuantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars as well as in the early stages of the universe moments after the Big Bang Three of the four fundamental forces of nature are described within the framework of quantum mechanics and quantum field theory: the electromagnetic interaction, the strong force, and the weak force; this leaves gravity as the only interaction that has not been fully accommodated.
Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Background independenceBackground independence is a condition in theoretical physics that requires the defining equations of a theory to be independent of the actual shape of the spacetime and the value of various fields within the spacetime. In particular this means that it must be possible not to refer to a specific coordinate system—the theory must be coordinate-free. In addition, the different spacetime configurations (or backgrounds) should be obtained as different solutions of the underlying equations.
Symmetry breakingIn physics, symmetry breaking is a phenomenon where a disordered but symmetric state collapses into an ordered, but less symmetric state. This collapse is often one of many possible bifurcations that a particle can take as it approaches a lower energy state. Due to the many possibilities, an observer may assume the result of the collapse to be arbitrary. This phenomenon is fundamental to quantum field theory (QFT), and further, contemporary understandings of physics.
Matrix multiplicationIn mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.
Matrix mechanicsMatrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum jumps supplanted the Bohr model's electron orbits. It did so by interpreting the physical properties of particles as matrices that evolve in time. It is equivalent to the Schrödinger wave formulation of quantum mechanics, as manifest in Dirac's bra–ket notation.
S-matrixIn physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT). More formally, in the context of QFT, the S-matrix is defined as the unitary matrix connecting sets of asymptotically free particle states (the in-states and the out-states) in the Hilbert space of physical states.
Path integral formulationThe path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude. This formulation has proven crucial to the subsequent development of theoretical physics, because manifest Lorentz covariance (time and space components of quantities enter equations in the same way) is easier to achieve than in the operator formalism of canonical quantization.
Noncommutative quantum field theoryIn mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative geometry and index theory in which the coordinate functions are noncommutative. One commonly studied version of such theories has the "canonical" commutation relation: which means that (with any given set of axes), it is impossible to accurately measure the position of a particle with respect to more than one axis.
Classical limitThe classical limit or correspondence limit is the ability of a physical theory to approximate or "recover" classical mechanics when considered over special values of its parameters. The classical limit is used with physical theories that predict non-classical behavior. A heuristic postulate called the correspondence principle was introduced to quantum theory by Niels Bohr: in effect it states that some kind of continuity argument should apply to the classical limit of quantum systems as the value of the Planck constant normalized by the action of these systems becomes very small.