Gravité quantiqueLa gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale. Une telle théorie permettrait notamment de comprendre les phénomènes impliquant de grandes quantités de matière ou d'énergie sur de petites dimensions spatiales, tels que les trous noirs ou l'origine de l'Univers. L'approche générale utilisée pour obtenir une théorie de la gravité quantique est, présumant que la théorie sous-jacente doit être simple et élégante, d'examiner les symétries et indices permettant de combiner mécanique quantique et la relativité générale en une théorie globale unifiée.
Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Background independenceBackground independence is a condition in theoretical physics that requires the defining equations of a theory to be independent of the actual shape of the spacetime and the value of various fields within the spacetime. In particular this means that it must be possible not to refer to a specific coordinate system—the theory must be coordinate-free. In addition, the different spacetime configurations (or backgrounds) should be obtained as different solutions of the underlying equations.
Brisure de symétrieUne symétrie est brisée quand un système ou les lois qui régissent son comportement ne cessent d'être invariants sous la transformation associée à cette symétrie. On observe des brisures de symétrie en physique (de l'échelle microscopique jusqu'à celle de l'Univers), en chimie (dont de nombreuses transitions de phase) et en biologie (par exemple l'asymétrie gauche-droite chez les Bilatériens). Une symétrie est explicitement brisée lorsque la loi qui régit son comportement est modifiée et n'est plus invariante dû à une cause externe.
Produit matricielLe produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).
Mécanique matricielleLa mécanique matricielle est une formulation de la mécanique quantique construite par Werner Heisenberg, Max Born et Pascual Jordan en 1925. La mécanique matricielle est la première définition complète et correcte de la mécanique quantique. Elle prolonge le modèle de Bohr en décrivant la manière dont se produisent les sauts quantiques, en interprétant les propriétés physiques des particules comme des matrices évoluant dans le temps.
Matrice SEn physique, la matrice S ou matrice de diffusion (plus rarement matrice de collision, ou S-matrice) est une construction mathématique qui relie l'état initial et l'état final d'un système physique soumis à un processus de diffusion/collision (). Elle est utilisée en mécanique quantique, en théorie de la diffusion des ondes et des particules, ainsi qu'en théorie quantique des champs. Plus particulièrement, en physique des particules, dans une expérience de collision, des particules sont préparées dans un état initial, puis accélérées afin de subir des collisions à hautes énergies.
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Noncommutative quantum field theoryIn mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative geometry and index theory in which the coordinate functions are noncommutative. One commonly studied version of such theories has the "canonical" commutation relation: which means that (with any given set of axes), it is impossible to accurately measure the position of a particle with respect to more than one axis.
Limite classiqueLa limite classique ou limite de correspondance est la capacité d'une théorie physique à retrouver pour certaines valeurs de ses paramètres les principes et résultats de la physique classique, c'est-à-dire la physique élaborée jusqu'à la fin du . La limite classique est utilisée avec des théories physiques qui prédisent un comportement non classique ; l'exemple le plus connu est la mécanique quantique, dont les grandeurs caractéristiques font toujours intervenir la constante de Planck ; sa limite classique est donc le plus souvent associée à la limite .