Rotating black holeA rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars (Sun), galaxies, black holes – spin. There are four known, exact, black hole solutions to the Einstein field equations, which describe gravity in general relativity. Two of those rotate: the Kerr and Kerr–Newman black holes.
Galaxy ZooGalaxy Zoo is a crowdsourced astronomy project which invites people to assist in the morphological classification of large numbers of galaxies. It is an example of citizen science as it enlists the help of members of the public to help in scientific research. There have been 15 versions as of July 2017. Galaxy Zoo is part of the Zooniverse, a group of citizen science projects. An outcome of the project is to better determine the different aspects of objects and to separate them into classifications.
Schwarzschild radiusThe Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass. The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916.
Mass-to-light ratioIn astrophysics and physical cosmology the mass-to-light ratio, normally designated with the Greek letter upsilon, Υ, is the quotient between the total mass of a spatial volume (typically on the scales of a galaxy or a cluster) and its luminosity. These ratios are often reported using the value calculated for the Sun as a baseline ratio which is a constant Υ☉ = 5133 kg/W: equal to the solar mass divided by the solar luminosity , /.
Velocity dispersionIn astronomy, the velocity dispersion (σ) is the statistical dispersion of velocities about the mean velocity for a group of astronomical objects, such as an open cluster, globular cluster, galaxy, galaxy cluster, or supercluster. By measuring the radial velocities of the group's members through astronomical spectroscopy, the velocity dispersion of that group can be estimated and used to derive the group's mass from the virial theorem.