Robot end effectorIn robotics, an end effector is the device at the end of a robotic arm, designed to interact with the environment. The exact nature of this device depends on the application of the robot. In the strict definition, which originates from serial robotic manipulators, the end effector means the last link (or end) of the robot. At this endpoint, the tools are attached. In a wider sense, an end effector can be seen as the part of a robot that interacts with the work environment.
Semisimple Lie algebraIn mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra , if nonzero, the following conditions are equivalent: is semisimple; the Killing form, κ(x,y) = tr(ad(x)ad(y)), is non-degenerate; has no non-zero abelian ideals; has no non-zero solvable ideals; the radical (maximal solvable ideal) of is zero.
Computational resourceIn computational complexity theory, a computational resource is a resource used by some computational models in the solution of computational problems. The simplest computational resources are computation time, the number of steps necessary to solve a problem, and memory space, the amount of storage needed while solving the problem, but many more complicated resources have been defined. A computational problem is generally defined in terms of its action on any valid input.
Spacetime algebraIn mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime. It is a vector space that allows not only vectors, but also bivectors (directed quantities associated with particular planes, such as areas, or rotations) or blades (quantities associated with particular hyper-volumes) to be combined, as well as rotated, reflected, or Lorentz boosted.
Human–robot interactionHuman–robot interaction (HRI) is the study of interactions between humans and robots. Human–robot interaction is a multidisciplinary field with contributions from human–computer interaction, artificial intelligence, robotics, natural language processing, design, and psychology. A subfield known as physical human–robot interaction (pHRI) has tended to focus on device design to enable people to safely interact with robotic systems. Human–robot interaction has been a topic of both science fiction and academic speculation even before any robots existed.
Geometric calculusIn mathematics, geometric calculus extends the geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to encompass other mathematical theories including vector calculus, differential geometry, and differential forms. With a geometric algebra given, let and be vectors and let be a multivector-valued function of a vector. The directional derivative of along at is defined as provided that the limit exists for all , where the limit is taken for scalar .
RobotA robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically. A robot can be guided by an external control device, or the control may be embedded within. Robots may be constructed to evoke human form, but most robots are task-performing machines, designed with an emphasis on stark functionality, rather than expressive aesthetics.
Quaternions and spatial rotationUnit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.
Applications of dual quaternions to 2D geometryIn this article, we discuss certain applications of the dual quaternion algebra to 2D geometry. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which we will call the planar quaternions. The planar quaternions make up a four-dimensional algebra over the real numbers. Their primary application is in representing rigid body motions in 2D space. Unlike multiplication of dual numbers or of complex numbers, that of planar quaternions is non-commutative.
Quantum computingA quantum computer is a computer that exploits quantum mechanical phenomena. At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior, specifically quantum superposition and entanglement, using specialized hardware that supports the preparation and manipulation of quantum states. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer.