**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Conditional Flatness, Fiberwise Localizations, And Admissible Reflections

Abstract

We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localization, analogous results to those obtained in the category of groups hold, and we provide existence theorems for certain localization functors in specific semi-abelian categories. We prove that a Birkhoff subcategory of an ideal determined category yields a conditionally flat localization, and explain how conditional flatness corresponds to the property of admissibility of an adjunction from the point of view of categorical Galois theory. Under the assumption of fiberwise localization, we give a simple criterion to determine when a (normal epi)-reflection is a torsion-free reflection. This is shown to apply, in particular, to nullification functors in any semi-abelian variety of universal algebras. We also relate semi-left-exactness for a localization functor L with what is called right properness for the L-local model structure.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (49)

Related publications (50)

Triangulated category

In mathematics, a triangulated category is a with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the of an , as well as the . The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology. Much of homological algebra is clarified and extended by the language of triangulated categories, an important example being the theory of sheaf cohomology.

Abelian category

In mathematics, an abelian category is a in which morphisms and can be added and in which s and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the , Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are and they satisfy the snake lemma.

Localization of a category

In mathematics, localization of a category consists of adding to a inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.

We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...

2023A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...

Visual estimates of stimulus features are systematically biased toward the features of previously encountered stimuli. Such serial dependencies have often been linked to how the brain maintains perceptual continuity. However, serial dependence has mostly b ...