Concept

Localization of a category

In mathematics, localization of a category consists of adding to a inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category. A C consists of objects and morphisms between these objects. The morphisms reflect relations between the objects. In many situations, it is meaningful to replace C by another category C''' in which certain morphisms are forced to be isomorphisms. This process is called localization. For example, in the category of R-modules (for some fixed commutative ring R) the multiplication by a fixed element r of R is typically (i.e., unless r is a unit) not an isomorphism: The category that is most closely related to R-modules, but where this map is an isomorphism turns out to be the category of -modules. Here is the localization of R with respect to the (multiplicatively closed) subset S consisting of all powers of r, The expression "most closely related" is formalized by two conditions: first, there is a functor sending any R-module to its localization with respect to S. Moreover, given any category C and any functor sending the multiplication map by r on any R-module (see above) to an isomorphism of C, there is a unique functor such that . The above examples of localization of R-modules is abstracted in the following definition. In this shape, it applies in many more examples, some of which are sketched below. Given a C and some class W of morphisms in C, the localization C[W−1] is another category which is obtained by inverting all the morphisms in W. More formally, it is characterized by a universal property: there is a natural localization functor C → C[W−1] and given another category D, a functor F: C → D factors uniquely over C[W−1] if and only if F sends all arrows in W to isomorphisms.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.