Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Strain is an inevitable phenomenon in two-dimensional (2D) material, regardless of whether the film is suspended or supported. Moreover, strain is known to alter the physical and chemical properties, such as the band gap, charge carrier effective masses, d ...
Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the t ...
Recently, two-dimensional (2D) material based gas sensing, especially transition metal dichalcogenide-based sensing, has been widely investigated thanks to its room temperature sensing ability. Unlike metal oxide based sensors, 2D material-based sensing ca ...
Local bandgap tuning in two-dimensional (2D) materials is of significant importance for electronic and optoelectronic devices but achieving controllable and reproducible strain engineering at the nanoscale remains a challenge. Here, we report on thermomech ...
Continuous tuning of material properties is highly desirable for a wide range of applications, with strain engineering being an interesting way of achieving it. The tuning range, however, is limited in conventional bulk materials that can suffer from plast ...