Publication

Online active and dynamic object shape exploration with a multi-fingered robotic hand

Abstract

The sense of touch can provide a robot with a wealth of information about the contact region when interacting with an unknown environment. Nevertheless, utilizing touch information to plan exploration paths and adjust robot posture to improve task efficiency remains challenging. This paper presents a novel approach for the online tactile surface exploration of unknown objects with a multidegree of freedom robotic hand. We propose an exploration strategy that actively maximizes the entropy of the acquired data while dynamically balancing the exploration's global knowledge and local complexity. We demonstrate that our method can efficiently control a multi-fingered robotic hand to explore objects of arbitrary shapes (e.g., with a handle, hole, or sharp edges). To facilitate efficient multi-contact exploration with a robotic hand, we offer an optimization-based planning algorithm that adapts the hand pose to the local surface geometry online and increases the kinematic configuration of each finger during exploration. Ultimately, we compared our approach to state of the art in a simulated environment. Experimental results indicate that our proposed methods can guide a multi-finger robotic hand to explore efficiently and smoothly, thereby reconstructing the unknown geometry of a variety of everyday objects, with significant improvements in data efficiency and finger compliance when compared to state-of-the-art approaches. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Robotics
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Robotic arm
A robotic arm is a type of mechanical arm, usually programmable, with similar functions to a human arm; the arm may be the sum total of the mechanism or may be part of a more complex robot. The links of such a manipulator are connected by joints allowing either rotational motion (such as in an articulated robot) or translational (linear) displacement. The links of the manipulator can be considered to form a kinematic chain. The terminus of the kinematic chain of the manipulator is called the end effector and it is analogous to the human hand.
Robotic sensing
Robotic sensing is a subarea of robotics science intended to provide sensing capabilities to robots. Robotic sensing provides robots with the ability to sense their environments and is typically used as feedback to enable robots to adjust their behavior based on sensed input. Robot sensing includes the ability to see, touch, hear and move and associated algorithms to process and make use of environmental feedback and sensory data.
Show more
Related publications (38)

Exploration-based model learning with self-attention for risk-sensitive robot control

Sudong Lee

Model-based reinforcement learning for robot control offers the advantages of overcoming concerns on data collection and iterative processes for policy improvement in model-free methods. However, both methods use exploration strategy relying on heuristics ...
2023

Neural Joint Space Implicit Signed Distance Functions for Reactive Robot Manipulator Control

Aude Billard, Mikhail Koptev, Nadia Barbara Figueroa Fernandez

In this paper, we present an approach for learning a neural implicit signed distance function expressed in joint space coordinates, that efficiently computes distance-to-collisions for arbitrary robotic manipulator configurations. Computing such distances ...
2022

Memory of Motion for Initializing Optimization in Robotics

Teguh Santoso Lembono

Many robotics problems are formulated as optimization problems. However, most optimization solvers in robotics are locally optimal and the performance depends a lot on the initial guess. For challenging problems, the solver will often get stuck at poor loc ...
EPFL2022
Show more
Related MOOCs (13)
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.