Publication

Spatiotemporal dissipative soliton resonances in multimode fiber lasers

Abstract

Spatiotemporal mode-locking in multimode fiber lasers is intriguing for the complex nonlinear dynamics and the increase of theoretical energy limit. In this paper, we enrich spatiotemporal mode-locking with dissipative soliton resonances, a kind of solitons which is characterized by large pulse energy in single mode fiber lasers, and demonstrate their emergence in multimode fiber lasers by employing the reverse saturable absorption effect from real saturable absorbers. The spatiotemporal dissipative soliton resonances are expected to raise the energy limit further by the locking of dissipative soliton resonances in different transverse modes, whose energy is about twice the maximum single-mode energy in our results. Moreover, properties of spatiotemporal dissipative soliton resonances are investigated by tailoring parameters of the multimode fiber laser, where evolution and transformation of the proposed pulses including shaping and broadening are disclosed. The spatiotemporal dissipative soliton resonances in multimode fiber lasers may open up new avenue for high-power and spatiotemporally engineered coherent light fields in laser dynamics and nonlinear optics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.