Publication

Extractable Witness Encryption for the Homogeneous Linear Equations Problem

Related concepts (39)
Diophantine equation
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations.
Cryptographic primitive
Cryptographic primitives are well-established, low-level cryptographic algorithms that are frequently used to build cryptographic protocols for computer security systems. These routines include, but are not limited to, one-way hash functions and encryption functions. When creating cryptographic systems, designers use cryptographic primitives as their most basic building blocks. Because of this, cryptographic primitives are designed to do one very specific task in a precisely defined and highly reliable fashion.
P versus NP problem
The P versus NP problem is a major unsolved problem in theoretical computer science. In informal terms, it asks whether every problem whose solution can be quickly verified can also be quickly solved. The informal term quickly, used above, means the existence of an algorithm solving the task that runs in polynomial time, such that the time to complete the task varies as a polynomial function on the size of the input to the algorithm (as opposed to, say, exponential time).
Cryptographic hash function
A cryptographic hash function (CHF) is a hash algorithm (a map of an arbitrary binary string to a binary string with a fixed size of bits) that has special properties desirable for a cryptographic application: the probability of a particular -bit output result (hash value) for a random input string ("message") is (as for any good hash), so the hash value can be used as a representative of the message; finding an input string that matches a given hash value (a pre-image) is unfeasible, assuming all input str
Cryptography
Cryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
Cryptographic protocol
A cryptographic protocol is an abstract or concrete protocol that performs a security-related function and applies cryptographic methods, often as sequences of cryptographic primitives. A protocol describes how the algorithms should be used and includes details about data structures and representations, at which point it can be used to implement multiple, interoperable versions of a program. Cryptographic protocols are widely used for secure application-level data transport.
NP-completeness
In computational complexity theory, a problem is NP-complete when: It is a decision problem, meaning that for any input to the problem, the output is either "yes" or "no". When the answer is "yes", this can be demonstrated through the existence of a short (polynomial length) solution. The correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions.
NP-hardness
In computational complexity theory, NP-hardness (non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard problem is the subset sum problem. A more precise specification is: a problem H is NP-hard when every problem L in NP can be reduced in polynomial time to H; that is, assuming a solution for H takes 1 unit time, Hs solution can be used to solve L in polynomial time.
NP (complexity)
In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine. NP is the set of decision problems solvable in polynomial time by a nondeterministic Turing machine.
Construction
Construction is a general term meaning the art and science to form objects, systems, or organizations, and comes from Latin constructio (from com- "together" and struere "to pile up") and Old French construction. To construct is the verb: the act of building, and the noun is construction: how something is built, the nature of its structure. In its most widely used context, construction covers the processes involved in delivering buildings, infrastructure, industrial facilities, and associated activities through to the end of their life.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.