From Probability Graphical Models to Dynamic Networks — A Bayesian perspective on Smooth Best Estimate of Trajectory with applications in Geodetic Engineering
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Accurate spatiotemporal modeling of conditions leading to moderate and large wildfires provides better understanding of mechanisms driving fire-prone ecosystems and improves risk management. Here, we develop a joint model for the occurrence intensity and t ...
We study the computations that Bayesian agents undertake when exchanging opinions over a network. The agents act repeatedly on their private information and take myopic actions that maximize their expected utility according to a fully rational posterior be ...
The increasing integration of intermittent renewable generation, especially at the distribution level, necessitates advanced planning and optimisation methodologies contingent on the knowledge of the admittance matrix, capturing the topology and line param ...
In this thesis, we assess a new framework called UMIN on a data-driven optimization problem. Such a problem happens recurrently in real life and can quickly become dicult to model when the input has a high dimensionality as images for instance. From the ar ...
Recently, a new adaptive path interpolation method has been developed as a simple and versatile scheme to calculate exactly the asymptotic mutual information of Bayesian inference problems defined on dense factor graphs. These include random linear and gen ...
A new strategy based on numerical homogenization and Bayesian techniques for solvingmultiscale inverse problems is introduced. We consider a class of elliptic problems which vary ata microscopic scale, and we aim at recovering the highly oscillatory tensor ...
The application of Bayesian modeling techniques is increasingly common in neuroscience due to the coherent and principled way in which the paradigm deals with uncertainty. The Bayesian framework is particularly valuable in the context of complex, ill-posed ...
We propose a novel application of pose estimation to precisely measure the hand finger width via noisy RGB-D image. A framework is developed that estimates the finger width given data from TrueDepth camera as well as the target finger measure- ment location. ...
We present a Bayesian inference for a three-dimensional hydrodynamic model of Lake Geneva with stochastic weather forcing and high-frequency observational datasets. This is achieved by coupling a Bayesian inference package, SPUX, with a hydrodynamics packa ...
In this work, we formulate the fixed-length distribution matching as a Bayesian inference problem. Our proposed solution is inspired from the compressed sensing paradigm and the sparse superposition (SS) codes. First, we introduce sparsity in the binary so ...