Resolution (algebra)In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of s of an ), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions.
Torsion tensorIn differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves (or rather the rotation of the Frenet–Serret frame about the tangent vector). In the geometry of surfaces, the geodesic torsion describes how a surface twists about a curve on the surface.
Hopf algebraIn mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an (unital associative) algebra and a (counital coassociative) coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.
Tensor fieldIn mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space (typically a Euclidean space or manifold). Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar (a pure number representing a value, for example speed) and a vector (a pure number plus a direction, like velocity), a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space.
Graded (mathematics)In mathematics, the term "graded" has a number of meanings, mostly related: In abstract algebra, it refers to a family of concepts: An algebraic structure is said to be -graded for an index set if it has a gradation or grading, i.e. a decomposition into a direct sum of structures; the elements of are said to be "homogeneous of degree i ". The index set is most commonly or , and may be required to have extra structure depending on the type of . Grading by (i.e. ) is also important; see e.g. signed set (the -graded sets).
Differential graded moduleIn algebra, a differential graded module, or dg-module, is a -graded module together with a differential; i.e., a square-zero graded endomorphism of the module of degree 1 or −1, depending on the convention. In other words, it is a chain complex having a structure of a module, while a differential graded algebra is a chain complex with a structure of an algebra. In view of the module-variant of Dold–Kan correspondence, the notion of an -graded dg-module is equivalent to that of a simplicial module; "equivalent" in the sense; see below.
Tor functorIn mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to construct invariants of algebraic structures. The homology of groups, Lie algebras, and associative algebras can all be defined in terms of Tor. The name comes from a relation between the first Tor group Tor1 and the torsion subgroup of an abelian group.
Proj constructionIn algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory. In this article, all rings will be assumed to be commutative and with identity. Let be a graded ring, whereis the direct sum decomposition associated with the gradation.
Abstract algebraIn mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning.
Graded vector spaceIn mathematics, a graded vector space is a vector space that has the extra structure of a grading or gradation, which is a decomposition of the vector space into a direct sum of vector subspaces, generally indexed by the integers. For "pure" vector spaces, the concept has been introduced in homological algebra, and it is widely used for graded algebras, which are graded vector spaces with additional structures. Let be the set of non-negative integers.