**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Resolution (algebra)

Summary

In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of s of an ), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are non-zero; it is usually represented by a finite exact sequence in which the leftmost object (for resolutions) or the rightmost object (for coresolutions) is the zero-object.
Generally, the objects in the sequence are restricted to have some property P (for example to be free). Thus one speaks of a P resolution. In particular, every module has free resolutions, projective resolutions and flat resolutions, which are left resolutions consisting, respectively of free modules, projective modules or flat modules. Similarly every module has injective resolutions, which are right resolutions consisting of injective modules.
Given a module M over a ring R, a left resolution (or simply resolution) of M is an exact sequence (possibly infinite) of R-modules
The homomorphisms di are called boundary maps. The map ε is called an augmentation map. For succinctness, the resolution above can be written as
The is that of a right resolution (or coresolution, or simply resolution). Specifically, given a module M over a ring R, a right resolution is a possibly infinite exact sequence of R-modules
where each Ci is an R-module (it is common to use superscripts on the objects in the resolution and the maps between them to indicate the dual nature of such a resolution). For succinctness, the resolution above can be written as
A (co)resolution is said to be finite if only finitely many of the modules involved are non-zero.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (2)

Related publications (32)

Related courses (11)

Related concepts (24)

Related lectures (34)

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

MATH-311: Algebra IV - rings and modules

Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.

MATH-410: Riemann surfaces

This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex

Ontological neighbourhood

Sheaf cohomology

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper. Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria.

Linear relation

In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution. More precisely, if are elements of a (left) module M over a ring R (the case of a vector space over a field is a special case), a relation between is a sequence of elements of R such that The relations between form a module. One is generally interested in the case where is a generating set of a finitely generated module M, in which case the module of the relations is often called a syzygy module of M.

Hilbert's syzygy theorem

In mathematics, Hilbert's syzygy theorem is one of the three fundamental theorems about polynomial rings over fields, first proved by David Hilbert in 1890, which were introduced for solving important open questions in invariant theory, and are at the basis of modern algebraic geometry. The two other theorems are Hilbert's basis theorem that asserts that all ideals of polynomial rings over a field are finitely generated, and Hilbert's Nullstellensatz, which establishes a bijective correspondence between affine algebraic varieties and prime ideals of polynomial rings.

Group Cohomology

Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.

Cohomology Operations: Cup Products and Bockstein

Explores cup products, Bockstein homomorphisms, and Steenrod algebra in cohomology.

Division in Extreme and Mean Reason: Euclidean Geometry

Delves into Euclidean geometry, focusing on Division in Extreme and Mean Reason (DEMR) and its historical evolution into a divine proportion.

The theory of persistence, which arises from topological data analysis, has been intensively studied in the one-parameter case both theoretically and in its applications. However, its extension to the multi-parameter case raises numerous difficulties, wher ...

We present DARKFLUX, a software tool designed to analyze indirect-detection signatures for next-generation models of dark matter (DM) with multiple annihilation channels. Version 1.0 of this tool accepts user-generated models with 2 -> 2 tree-level dark ma ...

Zsolt Patakfalvi, Joseph Allen Waldron

We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable sections of adjoint lin ...