Ensemble learningIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Randomized controlled trialA randomized controlled trial (or randomized control trial; RCT) is a form of scientific experiment used to control factors not under direct experimental control. Examples of RCTs are clinical trials that compare the effects of drugs, surgical techniques, medical devices, diagnostic procedures or other medical treatments. Participants who enroll in RCTs differ from one another in known and unknown ways that can influence study outcomes, and yet cannot be directly controlled.
Protein structure predictionProtein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its secondary and tertiary structure from primary structure. Structure prediction is different from the inverse problem of protein design. Protein structure prediction is one of the most important goals pursued by computational biology; and it is important in medicine (for example, in drug design) and biotechnology (for example, in the design of novel enzymes).
Evaluation strategyIn a programming language, an evaluation strategy is a set of rules for evaluating expressions. The term is often used to refer to the more specific notion of a parameter-passing strategy that defines the kind of value that is passed to the function for each parameter (the binding strategy) and whether to evaluate the parameters of a function call, and if so in what order (the evaluation order). The notion of reduction strategy is distinct, although some authors conflate the two terms and the definition of each term is not widely agreed upon.
Observational studyIn fields such as epidemiology, social sciences, psychology and statistics, an observational study draws inferences from a sample to a population where the independent variable is not under the control of the researcher because of ethical concerns or logistical constraints. One common observational study is about the possible effect of a treatment on subjects, where the assignment of subjects into a treated group versus a control group is outside the control of the investigator.
Case report formA case report form (or CRF) is a paper or electronic questionnaire specifically used in clinical trial research. The case report form is the tool used by the sponsor of the clinical trial to collect data from each participating patient. All data on each patient participating in a clinical trial are held and/or documented in the CRF, including adverse events. The sponsor of the clinical trial develops the CRF to collect the specific data they need in order to test their hypotheses or answer their research questions.
Model output statisticsIn weather forecasting, model output statistics (MOS) is a multiple linear regression technique in which predictands, often near-surface quantities (such as two-meter-above-ground-level air temperature, horizontal visibility, and wind direction, speed and gusts), are related statistically to one or more predictors. The predictors are typically forecasts from a numerical weather prediction (NWP) model, climatic data, and, if applicable, recent surface observations.
Decision qualityDecision quality (DQ) is the quality of a decision at the moment the decision is made, regardless of its outcome. Decision quality concepts permit the assurance of both effectiveness and efficiency in analyzing decision problems. In that sense, decision quality can be seen as an extension to decision analysis. Decision quality also describes the process that leads to a high-quality decision. Properly implemented, the DQ process enables capturing maximum value in uncertain and complex scenarios.
EpidemiologyEpidemiology is the study and analysis of the distribution (who, when, and where), patterns and determinants of health and disease conditions in a defined population. It is a cornerstone of public health, and shapes policy decisions and evidence-based practice by identifying risk factors for disease and targets for preventive healthcare. Epidemiologists help with study design, collection, and statistical analysis of data, amend interpretation and dissemination of results (including peer review and occasional systematic review).
Mathematical modelling of infectious diseasesMathematical models can project how infectious diseases progress to show the likely outcome of an epidemic (including in plants) and help inform public health and plant health interventions. Models use basic assumptions or collected statistics along with mathematics to find parameters for various infectious diseases and use those parameters to calculate the effects of different interventions, like mass vaccination programs. The modelling can help decide which intervention(s) to avoid and which to trial, or can predict future growth patterns, etc.