Electricity Theft Detection Using Dynamic Graph Construction and Graph Attention Network
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Spectral algorithms are some of the main tools in optimization and inference problems on graphs. Typically, the graph is encoded as a matrix and eigenvectors and eigenvalues of the matrix are then used to solve the given graph problem. Spectral algorithms ...
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods, which often lead to locally optimal solutions and require heavy online inference time consumption. To improve the quality of the solution and r ...
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
Supervised machine learning models are receiving increasing attention in electricity theft detection due to their high detection accuracy. However, their performance depends on a massive amount of labeled training data, which comes from time-consuming and ...
This work introduces DiGress, a discrete denoising diffusion model for generating graphs with categorical node and edge attributes. Our model utilizes a discrete diffusion process that progressively edits graphs with noise, through the process of adding or ...
We study an energy market composed of producers who compete to supply energy to different markets and want to maximize their profits. The energy market is modeled by a graph representing a constrained power network where nodes represent the markets and lin ...
Increasing adoption of smart meters and phasor measurement units (PMUs) in power distribution networks are enabling the adoption of data-driven/model-less control schemes to mitigate grid issues such as over/under voltages and power-flow congestions. Howev ...
We propose ordering-based approaches for learning the maximal ancestral graph (MAG) of a structural equation model (SEM) up to its Markov equivalence class (MEC) in the presence of unobserved variables. Existing ordering-based methods in the literature rec ...
Association for the Advancement of Artificial Intelligence (AAAI)2023
Federated learning is a semi-distributed algorithm, where a server communicates with multiple dispersed clients to learn a global model. The federated architecture is not robust and is sensitive to communication and computational overloads due to its one-m ...