**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Critical line of the triangular Ising antiferromagnet in a field from a C3-symmetric corner transfer matrix algorithm

Abstract

The corner transfer matrix renormalization group (CTMRG) algorithm has been extensively used to investigate both classical and quantum two-dimensional (2D) lattice models. The convergence of the algorithm can strongly vary from model to model depending on the underlying geometry and symmetries, and the presence of algebraic correlations. An important factor in the convergence of the algorithm is the lattice symmetry, which can be broken due to the necessity of mapping the problem onto the square lattice. We propose a variant of the CTMRG algorithm, designed for models with C3-symmetry, which we apply to the conceptually simple yet numerically challenging problem of the triangular lattice Ising antiferromagnet in a field, at zero and low temperatures. We study how the finite-temperature three-state Potts critical line in this model approaches the ground-state Kosterlitz-Thouless transition driven by a reduced field (h/T). In this particular instance, we show that the C3-symmetric CTMRG leads to much more precise results than both existing results from exact diagonalization of transfer matrices and Monte Carlo.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (36)

Related concepts (23)

Ontological neighbourhood

Square lattice

In mathematics, the square lattice is a type of lattice in a two-dimensional Euclidean space. It is the two-dimensional version of the integer lattice, denoted as \mathbb{Z}^2. It is one of the five types of two-dimensional lattices as classified by their symmetry groups; its symmetry group in IUC notation as p4m, Coxeter notation as [4,4], and orbifold notation as *442. Two orientations of an image of the lattice are by far the most common.

Lattice (group)

In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.

Symmetry group

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X). For an object in a metric space, its symmetries form a subgroup of the isometry group of the ambient space.

Tobias Schneider, Sajjad Azimi

A specific family of spanwise-localised invariant solutions of plane Couette flow exhibits homoclinic snaking, a process by which spatially localised invariant solutions of a nonlinear partial differential equation smoothly grow additional structure at the ...

2021Using ultrafast broad-band transient absorption (TA) spectroscopy of photoexcited MAPbBr3 thin films with probe continua in the visible and the mid- to deep-ultraviolet (UV) ranges, we capture the ultrafast renormalization at the fundamental gap at the R s ...

In ferroelectric switching, an applied electric field switches the system between two polar symmetry-equivalent states. In this work, we use first-principles calculations to explore the polar states of hydrogen-doped samarium nickelate (SNO) at a concentra ...