**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Band Gap Renormalization at Different Symmetry Points in Perovskites

Abstract

Using ultrafast broad-band transient absorption (TA) spectroscopy of photoexcited MAPbBr3 thin films with probe continua in the visible and the mid- to deep-ultraviolet (UV) ranges, we capture the ultrafast renormalization at the fundamental gap at the R symmetry point of the Brillouin zone (BZ) and a higher energy gap at the M symmetry point. Advanced global lifetime analysis and lifetime density distribution analysis are applied to extract quantitative information. Our work confirms the similarity of the response at both high-symmetry points, which indicates a band edge renormalization that rises within the instrument response function (IRF, similar to 250 fs) and decays in ca. 400-600 fs, undergoing an energy red shift of 90-150 meV. The reported time scale corresponds to the decay of free carriers into neutral excitons. The ability to monitor different high-symmetry points in photoexcited perovskites opens exciting prospects for the characterization of a large class of materials and for photonic applications.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (27)

Related publications (53)

Symmetry (geometry)

In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). Thus, a symmetry can be thought of as an immunity to change. For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable.

Symmetry group

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X). For an object in a metric space, its symmetries form a subgroup of the isometry group of the ambient space.

Rotational symmetry

Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation. Certain geometric objects are partially symmetrical when rotated at certain angles such as squares rotated 90°, however the only geometric objects that are fully rotationally symmetric at any angle are spheres, circles and other spheroids.

In ferroelectric switching, an applied electric field switches the system between two polar symmetry-equivalent states. In this work, we use first-principles calculations to explore the polar states of hydrogen-doped samarium nickelate (SNO) at a concentra ...

Tobias Schneider, Sajjad Azimi

A specific family of spanwise-localised invariant solutions of plane Couette flow exhibits homoclinic snaking, a process by which spatially localised invariant solutions of a nonlinear partial differential equation smoothly grow additional structure at the ...

2021Frédéric Mila, Samuel Louis Nyckees, Afonso Dos Santos Rufino, Jeanne Colbois

The corner transfer matrix renormalization group (CTMRG) algorithm has been extensively used to investigate both classical and quantum two-dimensional (2D) lattice models. The convergence of the algorithm can strongly vary from model to model depending on ...