Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
Elliptic Curve Cryptography (ECC) is a popular tool to construct public-key crypto-systems. The security of ECC is based on the hardness of the elliptic curve discrete logarithm problem (ECDLP). Implementing and analyzing the performance of the best known ...
Modern cryptography pushed forward the need of having provable security. Whereas ancient cryptography was only relying on heuristic assumptions and the secrecy of the designs, nowadays researchers try to make the security of schemes to rely on mathematical ...
We formulate a conjecture about the distribution of the canonical height of the lowest non-torsion rational point on a quadratic twist of a given elliptic curve, as the twist varies. This conjecture seems to be very deep and we can prove only partial resul ...
This thesis surveys the current state of the art of hash-based cryptography with a view to finding vulnerabilities related to side-channel attacks and fault attacks. For side-channel investigation, we analyzed the power consumption of an Arduino Due microc ...
We show how any pair of authenticated users can on-the-fly agree on an elliptic curve group that is unique to their communication session, unpredictable to outside observers, and secure against known attacks. Our proposal is suitable for deployment on cons ...
The RSA cryptosystem introduced in 1977 by Ron Rivest, Adi Shamir and Len Adleman is the most commonly deployed public-key cryptosystem. Elliptic curve cryptography (ECC) introduced in the mid 80's by Neal Koblitz and Victor Miller is becoming an increasin ...
Nowadays, the most popular public-key cryptosystems are based on either the integer factorization or the discrete logarithm problem. The feasibility of solving these mathematical problems in practice is studied and techniques are presented to speed-up the ...
Fix a prime number l. Graphs of isogenies of degree a power of l are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse gr ...
Motivated by the advantages of using elliptic curves for discrete logarithm-based public-key cryptography, there is an active research area investigating the potential of using hyperelliptic curves of genus 2. For both types of curves, the best known algor ...