Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In spring, when the mountainous snow cover becomes patchy, the strong multi-scale surface heterogeneity influences atmospheric heat exchange processes. At valley scale, thermally driven winds advect warm air towards snow-covered regions at higher elevations. Additionally, the difference in albedo between bare ground and adjacent snow patches causes strong surface temperature differences on a (sub-)meter scale. Consequently, the structure of the near-surface boundary layer is spatio-temporally highly variable. During spring 2021, we recorded data in a comprehensive field campaign in the Dischma valley close to Davos (CH). The dataset includes multiple eddy-covariance measurements at different measurement heights. The topographic setting allows to group the measurements into up valley and down valley flow systems. Using a multi-resolution spectral decomposition of turbulent flux variables, we investigate the structure and dynamics of near-surface turbulence. During up valley flows, the advection of warm air induces stable internal boundary layers (SIBL) adjacent to snow patches with near-neutral static stability above. The strong stability withing the SIBL eventually leads to decoupling of the near-surface turbulence from the submeso-scale motions aloft. In contrast, during down valley flows, stability dampens turbulence similarly at all measurement heights. In concert with those findings, measurements utilizing the IR-screen setup during the same campaign yield high spatio-temporally resolved air temperature profiles during phases of different stability. Furthermore, the screen measurements visualize the near-surface boundary layer dynamics. In the next step, we will use the gained process understanding to test new physical parameterizations especially for warm air advection in hectometer scale coupled snow-atmosphere models.
Michael Lehning, Dylan Stewart Reynolds, Michael Haugeneder
, , , , , , ,