A CTCF-dependent mechanism underlies the Hox timer relation to a segmented body plan
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Hox genes encode transcription factors that play a central role in the specification of regional identities along the anterior to posterior body axis. In the developing mouse embryo, Hox genes from all four genomic clusters are involved in range of develop ...
Hox genes control many aspects of embryonic development in metazoans. Previous analyses of this gene family revealed a surprising diversity in terms of gene number and organization between various animal species. In vertebrates, Hox genes are grouped into ...
The spatial and temporal control of Hox gene transcription is essential for patterning the vertebrate body axis. Although this process involves changes in histone posttranslational modifications, the existence of particular three-dimensional (3D) architect ...
Hox genes encode transcription factors essential for patterning the anterior to posterior animal body axis. In vertebrates, these genes are arranged in clusters. During development, Hox genes are activated in a time sequence that follows their physical ord ...
Hox genes are required for the development of the intestinal cecum, a major organ of plant-eating species. We have analyzed the transcriptional regulation of Hoxd genes in cecal buds and show that they are controlled by a series of enhancers located in a g ...
The importance of Hox genes in the specification of neuronal fates in the spinal cord has long been recognized. However, the transcriptional controls underlying their collinear expression domains remain largely unknown. Here we show in mice that the corres ...
Hox genes are central to the specification of structures along the anterior-posterior body axis, and modifications in their expression have paralleled the emergence of diversity in vertebrate body plans. Here we describe the genomic organization of Hox clu ...
During vertebrate development, the temporal control of Hox gene transcriptional activation follows the genomic order of the genes within the Hox clusters. Although it is recognized that this "Hox clock" serves to coordinate body patterning, the underlying ...
The search for a common developmental genetic mechanism of body segmentation appears to become more difficult, and more interesting, as new segmented organisms are added to the roster. Recent work in this journal by Brena and Akam on segmentation of the ge ...
A species-specific number of segments is a hallmark of the vertebrate body plan. The first segmental structures in the vertebrate embryo are the somites, which bud sequentially from the growing presomitic mesoderm (PSM). The Clock and Wavefront model for s ...