Analytical Model of Single-Sided Linear Induction Motors for High-Speed Applications
Related publications (35)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nonlinear modeling of coaxial microhelicopters is studied. All equations are derived using a Lagrangian approach and simplified aerodynamics assumptions so that all parameters have a physical meaning; there is no “black box.” The model is constructed with ...
The aim of this work is the development of a geometrical multiscale framework for the simulation of the human cardiovascular system under either physiological or pathological conditions. More precisely, we devise numerical algorithms for the partitioned so ...
Background: In this paper, we present a framework for improving the accuracy of fixed-step methods for Monte Carlo simulation of discrete stochastic chemical kinetics. Stochasticity is ubiquitous in many areas of cell biology, for example in gene regulatio ...
Several computational challenges arise when evaluating the failure probability of a given system in the context of risk prediction or reliability analysis. When the dimension of the uncertainties becomes high, well established direct numerical methods can ...
We consider a method to efficiently evaluate in a real-time context an output based on the numerical solution of a partial differential equation depending on a large number of parameters. We state a result allowing to improve the computational performance ...
In this project we numerically simulate electrophysiological models for cardiac applications by means of Isogeometric Analysis. Specifically, we aim at understanding the advantages of using high order continuous NURBS (Non-UniformRational B-Splines) basis ...
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-squ ...
A new method for solving numerically stochastic partial differential equations (SPDEs) with multiple scales is presented. The method combines a spectral method with the heterogeneous multiscale method (HMM) presented in [W. E, D. Liu, E. Vanden-Eijnden, An ...
The important task of evaluating the impact of random parameters on the output of stochastic ordinary differential equations (SODE) can be computationally very demanding, in particular for problems with a high-dimensional parameter space. In this work we c ...
This communication reports the status of the activity corresponding to the ESTEC contract ”RF Breakdown in Multicarrier Systems” (19918/06/NL/GLC/RF). The main objective of this activity is to propose alternatives to the 20-gap-crossing rule for multipacto ...